Skip to main content

A Review of Biopesticides and Their Mode of Action Against Insect Pests

  • Chapter
  • First Online:
Environmental Sustainability

Abstract

Biopesticides, including entomopathogenic viruses, bacteria, fungi, nematodes, and plant secondary metabolites, are gaining increasing importance as they are alternatives to chemical pesticides and are a major component of many pest control programs. The virulence of various biopesticides such as nuclear polyhedrosis virus (NPV), bacteria, and plant product were tested under laboratory conditions very successfully and the selected ones were also evaluated under field conditions with major success. Biopesticide products (including beneficial insects) are now available commercially for the control of pest and diseases. The overall aim of biopesticide research is to make these biopesticide products available at farm level at an affordable price, and this would become a possible tool in the integrated pest management strategy. Moreover, biopesticide research is still going on and further research is needed in many aspects including bioformulation and areas such as commercialization. There has been a substantial renewal of commercial interest in biopesticides as demonstrated by the considerable number of agreements between pesticide companies and bioproduct companies which allow the development of effective biopesticides in the market. This paper has reviewed the important and basic defection of major biopesticides in the past. The future prospects for the development of new biopesticides are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Kareem A, Saxena RC, Justo HD Jr (1987) Cost comparison of neem oil and an insecticide against rice tungro virus (RTV). Int Rice Res Newsl 12:28–29

    Google Scholar 

  • Arnason JT, Philogène BJR, Morand P (1989) Insecticides of plant origin. ACS symposium series 387, American Chemical Society, Washington, DC

    Google Scholar 

  • Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195:1–8

    Article  CAS  Google Scholar 

  • Arora R, Dhaliwal GS (1994) Botanical pesticides in insect pest management. In: Dhaliwal GS, Kansal BD (eds) Management of agricultural pollution in India. Commonwealth Publications, New Delhi, pp 213–245

    Google Scholar 

  • Arthurs SP, Lacey LA (2004) Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol Control 31:388–397

    Article  Google Scholar 

  • Arthurs SP, Lacey LA, Fritts R Jr (2005) Optimizing use of codling moth granulovirus: effects of application rate and spraying frequency on control of codling moth larvae in Pacific Northwest apple orchards. J Econ Entomol 98:1459–1468

    Article  CAS  Google Scholar 

  • Ascher KRS, Schmutterer H, Zebitz CPW, Naqvi SNH (1995) The Persian lilac or chinaberry tree: Melia azedarach L. In: Schmutterer H (ed) The neem tree: source of unique natural products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, pp 605–642

    Google Scholar 

  • Baker TC, Heath JJ (2004) Pheromones-function and use in insect control. In: Gilbert LI, Iatro K, Gill SS (eds) Molecular insect science. Elsevier, Amsterdam, pp 407–460

    Google Scholar 

  • Barber KN, Kaupp WJ, Holmes SB (1993) Specificity testing of the nuclear polyhedrosis virus of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Can Entomol 125:1055–1066

    Article  Google Scholar 

  • Becnel JJ, Andreadis TG (1999) Microsporidia in insects. In: Wittner M, Weiss LM (eds) The Microsporidia and Microsporidiosis. ASM Press, Washington, DC, pp 447–501

    Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173

    Article  CAS  Google Scholar 

  • Bird AF, Akhurst RJ (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J Parasitol 13:599–606

    Article  Google Scholar 

  • Brooks FM (1988) Entomogenous protozoa. In: Ignoffo CM, Mandava MB (eds) Handbook of natural pesticides, vol V, Microbial Insecticides, Part A, Entomogenous Protozoa and Fungi. CRC Press Inc, Boca Raton, pp 1–149

    Google Scholar 

  • Butt TM, Jackson CW, Magan N (2001a) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford

    Book  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001b) Introduction-fungal biological control agents: problems and potential. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 1–9

    Chapter  Google Scholar 

  • Cai S-F, Lu X-M, Qiu H-H, Li M-Q, Feng Z-Z (2012) Phagocytic uptake of Nosema bombycis (Microsporidia) spores by insect cell lines. J Integr Agric 11:1321–1326

    Article  Google Scholar 

  • Carlton BC (1993) Genetics of Bt insecticidal crystal proteins and strategies for the construction of improved strains. In: Duke SO, Menn JJ, Plimmer JR (eds), Pest control with enhanced environmental safety. ACS symposium series 524, American Chemical Society, Washington, DC. pp 326–337

    Google Scholar 

  • Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 15:369–374

    Article  CAS  Google Scholar 

  • Champagne DE, Isman MB, Towers GHN (1989) Insecticidal activity of phytochemicals and extracts of the Meliaceae. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society symposium series 387, pp 95–109

    Google Scholar 

  • Champagne DE, Koul O, Isman MB, Scudder GGE, Towers GHN (1992) Biological activity of limonoids from the Rutales. Phytochemistry 31:377–394

    Article  CAS  Google Scholar 

  • Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic Biochem Physiol 104:65–71

    Article  CAS  Google Scholar 

  • Chavan SR (1984) Chemistry of alkanes separated from leaves of Azadirachta indica and their larvicidal/insecticidal activity against mosquitoes. In: Schmutterer H, Ascher KRS (eds) Natural pesticides from the neem tree and other tropical plant, proceedings of the 2nd international neem conference, Rauischholzhausen, Federal Republic of Germany, 25–28 May 1983, pp 59–66

    Google Scholar 

  • Chilcott CN, Kalmakoff J, Pillai JS (1983) Characterization of proteolytic activity associated with Bacillus thuringiensis var. israelensis crystals. FEMS Microbiol Lett 18:37–41

    Article  CAS  Google Scholar 

  • Connolly JD (1983) Chemistry of the Meliaceae and Cneoraceae. In: Waterman PG, Grunden MF (eds) Chemistry and chemical taxonomy of the rutales. Academic, London, pp 175–213

    Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Cory JS (2000) Assessing the risks of releasing genetically modified virus insecticides: progress to date. Crop Prot 19:779–785

    Article  Google Scholar 

  • Cory JS, Hirst ML, Sterling PH, Speight MR (2000) Native host range nucleopolyhedric virus for control of the browntail moth (Lepidoptera: Lymantriidae). Environ Entomol 29:661–667

    Article  Google Scholar 

  • Darboux I, Nielsen-LeRoux C, Charles J-F, Pauron D (2001) The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem Mol Biol 31:981–990

    Article  CAS  Google Scholar 

  • Dhaliwal GS, Arora R (2001) Role of phytochemicals in integrated pest management. In: Koul O, Dhaliwal GS (eds) Phytochemical biopesticides. Harwood Academic Publishers, Amsterdam, pp 97–117

    Google Scholar 

  • Dhaliwal GS, Singh J, Dilawari VK (1996) Potential of neem in insect pest management in rice. In: Singh RP, Chari MS, Raheja AK, Kraus W (eds) Neem and environment, vol 1. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, pp 425–431

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic, London, pp 413–415

    Google Scholar 

  • Driver F, Milner RJ, Trueman JWH (2000) A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol Res 104:134–150

    Article  CAS  Google Scholar 

  • Duncan LW, McCoy CW (1996) Vertical distribution in soil, persistence, and efficacy against citrus root weevil (Coleoptera: Curculionidae) of two species of entomogenous nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Environ Entomol 25:174–178

    Google Scholar 

  • EPA (Environmental Protection Agency) (2006) New biopesticide active ingredients. www.epa.gov/pesticides/biopesticides/product lists/. Accessed 23 July 2013

  • EPA (Environmental Protection Agency) (2013) Regulating biopesticides. www.epa.gov/opp00001/biopesticides. Accessed 23 July 2013

  • Faria MR, Magalhães BP (2001) O uso de fungos entomopatogênicos no Brasil. Biotecnol Cienc Desenvolvimento 22:18–21

    Google Scholar 

  • Fegan M, Manners JM, Maclean DJ, Irwin JAG, Samuels KDZ, Holdom DG, Li DP (1993) Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Microbiology 139:2075–2081

    CAS  Google Scholar 

  • Gelernter W, Schwab GE (1993) Transgenic bacteria, viruses, algae and other microorganisms as Bacillus thuringiensis toxin delivery systems. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 89–124

    Google Scholar 

  • Georgis R (1990) Formulation and application technology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 173–191

    Google Scholar 

  • Goettel MS, Jaronski ST (1997) Safety and registration of microbial agents for control of grasshoppers and locusts. In: Goettel MS, Johnson DL (eds) Microbial control of grasshoppers and locusts, vol 171, Memoirs of the Entomological Society of Canada., pp 83–99

    Google Scholar 

  • Goettel MS, Hajek AE, Siegel JP, Evans HC (2001) Safety of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 347–375

    Chapter  Google Scholar 

  • Goldberg LH, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554

    Article  CAS  Google Scholar 

  • Grewal PS, Lewis EE, Gaugler R (1997) Response of infective stage parasites (Nematoda: Steinernematidae) to volatile cues from infected hosts. J Chem Ecol 23:503–515

    Article  CAS  Google Scholar 

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI Publishing, Wallingford, pp 505

    Book  Google Scholar 

  • Henry JE, Oma EA (1981) Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic, London, pp 573–586

    Google Scholar 

  • Hom A (1996) Microbials, IPM and the consumer. IPM Pract 18:1–11

    Google Scholar 

  • Howse P, Stevens I, Jones O (1998) Insect pheromones and their use in pest management. Chapman and Hill, London, pp 639

    Book  Google Scholar 

  • James C (2009) Global status of commercialized biotech/GM crops. ISAAA Brief No. 41, I. ISAAA, Ithaca

    Google Scholar 

  • Juan A, Sans A, Riba M (2000) Antifeedant activity of fruit and seed extracts of Melia azedarach and Azadirachta indica on larvae of Sesamia nonagrioides. Phytoparsitica 28:311–319

    Article  Google Scholar 

  • Kogan M, Jepson P (2007) Ecology, sustainable development and IPM: the human factor. In: Kogan M, Jepson P (eds) Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge, UK, pp 1–44

    Chapter  Google Scholar 

  • Kolodny-Hirsch DM, Sitchawat T, Jansiri T, Chenrchaivachirakul A, Ketunuti U (1997) Field evaluation of a commercial formulation of the Spodoptera exigua (Lepidoptera: Noctuidae) nuclear polyhedrosis virus for control of beet armyworm on vegetable crops in Thailand. Biocontrol Sci Tech 7:475–488

    Article  Google Scholar 

  • Kumar S (2012) Biopesticides: a need for food and environmental safety. J Biofertil Biopestic 3:4

    Google Scholar 

  • Laurent P, Frérot B (2007) Monitoring of European corn borer with pheromone-baited traps: review of trapping system basics and remaining problems. J Econ Entomol 100:1797–1807

    Article  Google Scholar 

  • Leskey TC, Wright SE, Short BD, Khrimian A (2012) Development of behaviorally-based monitoring tools for the brown marmorated stink bug (Heteroptera: Pentatomidae) in commercial tree fruit orchards. J Entomol Sci 47:76–85

    Google Scholar 

  • Loya LJ, Hower AA Jr (2002) Population dynamics, persistence, and efficacy of the entomopathogenic nematode Heterorhabditis bacteriophora (Oswego strain) in association with the clover root curculio (Coleoptera: Curculionidae) in Pennsylvania. Environ Entomol 31:1240–1250

    Article  Google Scholar 

  • Maddox JV (1987) Protozoan diseases. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 417–452

    Google Scholar 

  • Mayer MS, McLaughlin JR (1991) Handbook of insect pheromones and sex attractants. CRC Press, Boca Raton

    Google Scholar 

  • Mazid S, Kalida JC, Rajkhowa RC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1:169–178

    Google Scholar 

  • McSorely R (1999) Non-chemical management of plant-parasitic nematodes. IPM Pract 21:1–7

    Google Scholar 

  • Menn JJ, Hall FR (1999) Biopesticides: present status and future prospects. In: Hall FR, Menn JJ (eds) Biopesticides use and delivery. Humana Press, Totowa, pp 1–10

    Google Scholar 

  • Miller LK (1997) The Baculovirus. Plenum Press, New York, pp 7–32

    Book  Google Scholar 

  • Mnyone LL, Koenraadt CJM, Lyimo IN, Mpingwa MW, Takken W, Russell TL (2010) Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasite Vectors 3:80

    Article  Google Scholar 

  • Mordue (Luntz) AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39:903–924

    Article  Google Scholar 

  • Morgan ED (2004) The place of neem among modern natural pesticides. In: Koul O, Wahab S (eds) Neem: today and in the New Millennium. Kluwer Academic Publishers, Dordrecht, Holland, pp 21–32

    Google Scholar 

  • Morgan ED, Wilson ID (1999) Insect hormones and insect chemical ecology. In: Mori K (ed) Comprehensive natural products chemistry. Elsevier, Amsterdam, The Netherlands, pp 263–375

    Google Scholar 

  • Morris ON (1985) Susceptibility of 31 species of agricultural pests to entomogenous nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Can Entomol 122:309–320

    Article  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  Google Scholar 

  • Nanda UK, Parija B, Pradhan WC, Nanda B, Dash DD (1996) Bioefficacy of neem derivatives against insect pest complex of rice. In: Singh RP, Chari MS, Raheja AK, Kraus W (eds) Neem and environment. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, pp 517–527

    Google Scholar 

  • Naqvi SNH (1996) Prospects and development of a neem based pesticide in Pakistan. In: Proceedings of the 16th Congress of Zoology, Islamabad, pp 325–338

    Google Scholar 

  • Nisha S, Revathi K, Chandrasekaran R, Kirubakaran SA, Sathish-Narayanan S, Stout MJ, Senthil-Nathan S (2012) Effect of plant compounds on induced activities of defense-related enzymes and pathogenesis related protein in bacterial blight disease susceptible rice plant. Physiol Mol Plant Pathol 80:1–9

    Article  CAS  Google Scholar 

  • Peng C-L, Gu P, Li J, Chen Q-Y, Feng C-H, Luo H-H, Du Y-J (2012) Identification and field bioassay of the sex pheromone of Trichophysetis cretacea (Lepidoptera: Crambidae). J Econ Entomol 105:1566–1572

    Article  CAS  Google Scholar 

  • Peters A (1996) The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Sci Technol 6:389–402

    Article  Google Scholar 

  • Pomar GO Jr, Leutenegger R (1968) Anatomy of the effective and normal third stage juveniles of Steinernema carpocapsae Weiser (Steinernematidae: Nematoda). J Parasitol 54:340–350

    Article  Google Scholar 

  • Popham HJR, Li Y, Miller LK (1997) Genetic improvement of Helicoverpa zea nuclear polyhedrosis virus as a biopesticide. Biol Control 10:83–91

    Article  Google Scholar 

  • Pradhan S, Jotwani MG, Rai BK (1962) The neem seed deterrent to locust. Indian Farm 12:7–11

    Google Scholar 

  • Prater CA, Redmond C, Barney W, Bonning BC, Potter DA (2006) Microbial control of black cutworm (Lepidoptera: Noctuidae) in turfgrass using Agrotis ipsilon multiple nucleopolyhedrovirus. J Econ Entomol 99:1129–1137

    Article  Google Scholar 

  • Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    Article  CAS  Google Scholar 

  • Revathi K, Chandrasekaran R, Thanigaivel A, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2013) Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pestic Biochem Physiol 107:369–376

    Article  CAS  Google Scholar 

  • Richards A, Speight MR, Cory J (1999) Characterization of a nucleopolyhedrovirus from the vapourer moth, Orgyia antiqua (Lepidoptera Lymantriidae). J Invertebr Pathol 74:137–142

    Article  CAS  Google Scholar 

  • Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70

    Article  CAS  Google Scholar 

  • Saxena RC (1998) “Green revolutions” without blues: botanicals for pest management. In: Dhaliwal GS, Randhawa NS, Arora R, Dhawan AK (eds) Ecological agriculture and sustainable development, vol 2. Indian Ecological Society and Centre for Research in Rural and Industrial Development, Chandigarh, pp 111–127

    Google Scholar 

  • Saxena RC, Epino PB, Cheng WT, Puma BC (1984) Neem, chinaberry and custard apple: antifeedant and insecticidal effects of seed oils on leafhopper and planthopper pests of rice. In: Schmutterer H, Ascher KRS (eds) Natural pesticides from the neem tree and other tropical plants, proceedings of the 2nd International Neem Conference, Rauischholzhausen, Federal Republic of Germany, 25–28 May 1983, pp 403–412

    Google Scholar 

  • Schmidt GH, Rembold H, Ahmed AAI, Breuer AM (1998) Effect of Melia azedarach fruit extract on juvenile hormone titer and protein content in the hemolymph of two species of noctuid lepidopteran larvae (Insecta: Lepidoptera: Noctuidae). Phytoparasitica 26:283–292

    Article  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    Article  CAS  Google Scholar 

  • Schmutterer H, Singh RP (1995) List of insect pests susceptible to neem products. In: Schmutterer H (ed) The neem tree: source of unique natural products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, pp 325–326

    Chapter  Google Scholar 

  • Senthil-Nathan S, Kalaivani K (2005) Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Biol Control 34:93–98

    Article  CAS  Google Scholar 

  • Senthil-Nathan S, Kalaivani K (2006) Combined effects of azadirachtin and nucleopolyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) larvae. Biol Control 39:96–104

    Article  CAS  Google Scholar 

  • Senthil-Nathan S, Sehoon K (2006) Effects of Melia azedarach L. extract on the teak defoliator Hyblaea puera Cramer (Lepidoptera: Hyblaeidae). Crop Prot 25:287–291

    Article  Google Scholar 

  • Senthil-Nathan S, Chung PG, Murugan K (2004) Effect of botanical insecticides and bacterial toxins on the gut enzyme of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica 32:433–443

    Article  Google Scholar 

  • Senthil-Nathan S, Chung PG, Murugan K (2005a) Effect of biopesticides applied separately or together on nutritional indices of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica 33:187–195

    Article  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Murugan K, Chung PG (2005b) Efficacy of neem limonoids on Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) the rice leaffolder. Crop Prot 24(8):760–763

    Article  CAS  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Murugan K, Chung PG (2005c) The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guenée) the rice leaffolder. Pestic Biochem Physiol 81:113–122

    Article  CAS  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Murugan K (2005d) Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55

    Article  CAS  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Murugan K (2006) Behavioural responses and changes in biology of rice leaffolder following treatment with a combination of bacterial toxins and botanical insecticides. Chemosphere 64:1650–1658

    Article  CAS  Google Scholar 

  • Senthil-Nathan S (2006) Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pestic Biochem Physiol 84:98–108

    Article  CAS  Google Scholar 

  • Senthil-Nathan S (2013) Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol 4:359

    Article  Google Scholar 

  • Senthil-Nathan S, Choi M-Y, Paik C-H, Seo H-Y, Kalaivani K (2009) Toxicity and physiological effects of neem pesticides applied to rice on the Nilaparvata lugens Stål, the brown planthopper. Ecotoxicol Environ Saf 72:1707–1713

    Article  CAS  Google Scholar 

  • Shannag HK, Capinera JL (2000) Interference of Steinernema carpocapsae (Nematoda: Steinernematidae) with Cardiochiles diaphaniae (Hymenoptera: Braconidae), a parasitoid of melonworm and pickleworm (Lepidoptera: Pyralidae). Environ Entomol 29:612–617

    Article  Google Scholar 

  • Shapiro DI, McCoy CW (2000) Virulence of entomopathogenic nematodes to Diaprepes abbreviatus (Coleoptera: Curculionidae) in the laboratory. J Econ Entomol 93:1090–1095

    Article  CAS  Google Scholar 

  • Singh RP (1996) Bioactivity against insect pests. In: Randhawa NS, Parmar BS (eds) Neem research and development. New Age International (P) Ltd., New Delhi, pp 146–159

    Google Scholar 

  • Singh RP (2000) Botanicals in pest management: an ecological perspective. In: Dhaliwal GS, Singh B (eds) Pesticides and environment. Commonwealth Publishers, New Delhi, pp 279–343

    Google Scholar 

  • Singh RP, Kataria PK (1991) Insects, nematodes and fungi evaluated with neem (Azadirachta indica A. Juss) in India. Neem Newsl 8:3–10

    Google Scholar 

  • Singh RP, Raheja AK (1996) Strategies in management of insect pests with neem (Azadirachta indica A. Juss). In: Singh RP, Chari MS, Raheja AK, Kraus W (eds) Neem and environment, vol 1. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 103–120

    Google Scholar 

  • Solter LF, Becnel JJ (2000) Entomopathogenic microsporida. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Kluwer Academic, Dordrecht, pp 231–254

    Chapter  Google Scholar 

  • Su T, Mulla MS (1999) Oviposition bioassay responses of Culex tarsalis and Culex quinquefasciatus to neem products containing azadirachtin. Entomol Exp Appl 91:337–345

    Article  CAS  Google Scholar 

  • Tulloch M (1976) The genus Metarhizium. Trans Br Mycol Soc 66:407–411

    Article  Google Scholar 

  • Wall C (1990) Principle of monitoring. In: Ridgeway RL, Silverstein RM, Inscoe MN (eds) Behavior- modifying chemicals for insect management: applications of pheromones and other attractants. Marcel Dekker Inc., New York, pp 9–23

    Google Scholar 

  • Warthen JD, Morgan ED (1985) Insect feeding deterrents. In: Morgan ED, Mandava NB (eds) Handbook of natural pesticides, vol 6, Insect Attractants and Repellents. CRC Press, Boca Raton, pp 23–149, 4

    Google Scholar 

  • Witzgall P, Lindblom T, Bengtsson M, Toth M (2004) The Pherolist. http://www.pherolist.slu.se/pherolist.php. Accessed 23 July 2013

  • Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522

    Article  CAS  Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    Article  CAS  Google Scholar 

  • Zebitz CPW (1984) Effects of some crude and azadirachtin-enriched neem (Azadirachta indica) seed kernel extracts on larvae of Aedes aegypti. Entomol Exp Appl 35:11–16

    Article  Google Scholar 

  • Zebitz CPW (1986) Effects of three neem seed kernel extracts and azadirachtin on larvae of different mosquito species. J Appl Entomol 102:455–463

    Article  CAS  Google Scholar 

  • Zhu Y-C, Kramer KJ, Oppert B, Dowdy AK (2000) cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Biochem Mol Biol 30:215–224

    Article  CAS  Google Scholar 

  • Zimmermann G (1993) The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pest Manag Sci 37:375–379

    Article  Google Scholar 

Download references

Acknowledgments

This book chapter was supported by the grants from the Department of Biotechnology, Government of India (BT/PR12049/AGR/05/468/2009). I would like to thank my lab members, Dr. Kannan Revathi, Dr. Rajamanickam Chandrasekaran, and Venkatraman Pradeepa, for their help during the preparation of this book chapter. Also, I extend my thanks to K. Karthikeyan for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sengottayan Senthil-Nathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Senthil-Nathan, S. (2015). A Review of Biopesticides and Their Mode of Action Against Insect Pests. In: Thangavel, P., Sridevi, G. (eds) Environmental Sustainability. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2056-5_3

Download citation

Publish with us

Policies and ethics