Skip to main content

Plant–Microbe Interactions: Promoting Biocontrol of Phytopathogens of Cereal Grains

  • Chapter
  • First Online:
Microbial Biotechnology in Crop Protection
  • 1011 Accesses

Abstract

Cereal grains were the first agricultural attempts by early man, and are particularly important to humans because of their role as staple food crops worldwide. Given the nutritional and economic importance of grains, microbial diseases are a real danger to global food security. Several methods are implied to control diseases of cereal crops such as cultural practices, chemical control, using resistant varieties and biological control. Due to negative impact of chemical management of phytopathogens on soil ecosystems emerging interest on nontoxic microbial formulations has shown some promise, and despite being relatively recent approach there are some bacterial biocontrol products that are available against such diseases. In order to develop sustainable farming approaches such as biofertilizers and biopesticides, the study of host plants and associated microbial interactions in the rhizosphere plays an important role. Growth promotion and productivity of crop plants being important globally, it is central to know what type of microorganisms are present and what functions they are performing in the rhizosphere. In this chapter, we have discussed soil borne fungal and bacterial pathogens of cereal crops along with management of various phytopathogens via plant–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (1997) Plant pathology. Academic Press, San Diego

    Google Scholar 

  • Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189

    Article  Google Scholar 

  • Al-Hazmi AS, Ibrahim AAM, Abdul-Razig AT (1994) Occurrence, morphology and reproduction of Heterodera avenae on wheat and barley in Saudi Arabia. Pakistan J Nematol 12:117–129

    Google Scholar 

  • Bagyaraj DJ (2011) Microbial biotechnology for sustainable agriculture, horticulture & forestry. New India Publication Agency, New Delhi

    Google Scholar 

  • Bailey DJ, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, Vol. 2. Enzymes, biological control and commercial applications. Taylor & Francis, London, pp 185–204

    Google Scholar 

  • Bais HP, Tiffony L, Weir LT, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plant and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Barka EA, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Article  Google Scholar 

  • Becard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 8:252–258

    Article  CAS  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    Article  PubMed  CAS  Google Scholar 

  • Bisset J (1991) A revision of the genus Trichoderma II Infrageneric classification. Can J Bot 69(11):2357–2372

    Article  Google Scholar 

  • Bontempo AF, Fernandes RH, Lopes J, Freitas LAG, Lopes EA (2014) Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australas Plant Pathol 43(4):421–424

    Article  Google Scholar 

  • Brimmer T, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Burge MN (1988) The scope of fungi in biological control. In: Burge MN (ed) Fungi in biological control system. Manchester University Press, Manchester, pp 1–17

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731. https://doi.org/10.1371/journal.pone.0055731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Sussmuth R, Piel J, Borriss RJ (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Australas Biotechnol 140:27–37

    CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Christou P (2005) Sustainable and durable insect pest resistance in transgenic crops. ISBN report, p 3

    Google Scholar 

  • Cordo C, Monaco C, Segarra C, Simon MR, Bayo D, Mansilla A, Kripels N, Conde R, Perello A (2007) Trichoderma spp. as elicitor of wheat plant defense responses against Septoria tritici. Biocontrol Sci Technol 17:687

    Article  Google Scholar 

  • Da Luz WC, Bergstrom GC, Stockwell CA (1998) Seed-applied bioprotectants for control of seed-borne Pyrenophora tritici-repentis and agronomic enhancement of wheat. Can J Plant Pathol 19:384–386

    Google Scholar 

  • Davanlou M, Madsen AM, Madsen CH, Hockenhull J (1999) Parasitism of macroconidia, chlamydospores and hyphae of Fusarium culmorum by mycoparasitic Pythium species. Plant Pathol 48:352–359

    Article  Google Scholar 

  • Davies KG, Flynn CA, Laird V, Kerry BR (1990) The life-cycle, population dynamics and host specificity of a parasite of heterodera avenae, similar to pasteuria penetrans. Rev Nematol 13(3):303–309

    Google Scholar 

  • De Vleesschauwer D, Djavaheri M, Bakker PA, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148(4):1996–2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Weger LA, van der Bij AJ, Dekkers LC, Simons M, Wijffelman CA, Lugtenberg BJJ (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228

    Article  Google Scholar 

  • Deacon JW (1994) Rhizosphere constraints affecting biocontrol organisms applied to seeds. In: Seed treatment: prospects and progress. British Crop Protection Council, Thornton Heath, pp 315–327

    Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227

    Article  Google Scholar 

  • Duczek LJ (1997) Biological control of common root rot in barley by Idriella bolleyi. Can J Plant Pathol 19:402–405

    Article  Google Scholar 

  • Elad Y (1995) Mycoparasitism. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity I plant diseases: histopathological, biochemical, genetic and molecular basis, vol 2. Pergamon, Oxford, pp 289–307

    Google Scholar 

  • Eparvier A, Alabouvette C (1994) Use of ELISA and GUS transformed strains to study competition between pathogenic Fusarium oxysporum for root colonization. Biocontrol Sci Tech 4:35–47

    Article  Google Scholar 

  • Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D'Ovidio R (2012) Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 14:31–38

    Article  PubMed  CAS  Google Scholar 

  • Filion M, St. Amaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root- specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  CAS  Google Scholar 

  • Fravel DC (1988) Role of antibiotics in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E (2012) Surface a-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 8:e1002882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garagulya AD, Kiprianova EA, Boiko OI (1974) Antibiotic effect of bacteria from genus Pseudomonas on phytopathogenic fungi. Mikrobiol Zh (Kiev) 36:197–202

    CAS  Google Scholar 

  • Gnanamanickam S, Brindha Priyadarisini V, Narayanan N, Vasudevan P, Kavitha S (1999) An overview of bacterial blight disease of rice and strategies for its management. Curr Sci 77:1435–1443

    Google Scholar 

  • Gokte N, Swarup G (1988) On the potential of some bacterial biocides against root-knot and cyst nematodes. Indian J Nematol 18(1):152–153

    Google Scholar 

  • Gond S, Bergen M, Torres MS, White JF (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lakshman DK, Galvez LC, Mitra S, Baenziger PS (2012) Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biol 12:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  PubMed  CAS  Google Scholar 

  • Hebber KP, Martel MH, Heulin T (1998) Suppression of pre- and post-emergence damping-off in corn by Burkholderia cepacia. EJPP 104:29–36

    Google Scholar 

  • Herr LJ (1995) Biological control of Rhizoctonia solani by binucleate Rhizoctonia spp. and hypovirulent R. solani agents. Crop Prot 14:179–186

    Article  Google Scholar 

  • Hinton MJ, Parry DW (2008) Screening selected fungi for antagonism towards Pseudocercosporella herpotrichoides (Fron) Deighton, the cause of eyespot disease of cereals. Biocontrol Sci Technol 3:13–19. https://doi.org/10.1080/09583159309355254

    Article  Google Scholar 

  • Huang Y, Wong PTW (1998) Effect of Burkholderia (Pseudomonas) cepacia and soil type on the control of crown rot in wheat. Plant and Soil 203:103–108

    Article  CAS  Google Scholar 

  • Huang C, Yang K, Liu Y, Lin Y, Chen C (2010) Suppression of southern corn leaf blight by a plant growth promoting rhizobacterium Bacillus cereus C1L. Ann Appl Biol 157:45–53

    Article  Google Scholar 

  • Hulme-Beaman A, Dobney K, Cucchi T, Searle JB (2016) An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol Evol 31(8):633–645

    Article  PubMed  Google Scholar 

  • Inch S, Gilbert J (2007) Effect of Trichoderma harzianum on perithecial production of Gibberellazeae on wheat straw. Biocontrol Sci Tech 17(5):635–646

    Article  Google Scholar 

  • Jayalakshmi C, Madhiazhagan K, Rettinassababady C (2010) Effect of different methods of application of Pseudomonas fluorescens against bacterial leaf blight under direct sown rice. J Biopest 3:487–488

    Google Scholar 

  • Johnsson L, Hökeberg M, Gerhardson B (1998) Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Eur J Plant Pathol 104:701–711

    Article  Google Scholar 

  • Jorgensen LN, Matzen N (2017) Control of powdery mildew (Blumeria graminis) in cereals using serenade®ASO. In: Conference: 12th EFPP, Dunkerque, https://doi.org/10.13140/RG.2.2.34936.24320

  • Jothi G, Sundarababu R (2002) Nursery management of Meloidogyne incognita by Glomus mosseae in egg plant. Nematol Medit 30:153–154

    Google Scholar 

  • Kakar KU, Nawaz Z, Cui Z, Almoneafy AA, Ullah R, Shu QY (2013) Rhizosphere associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice. J Appl Microbiol 124:779. https://doi.org/10.1111/jam.13678

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhinkov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars and Ltryptophan in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  PubMed  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger F, Withner P, Haas D, DiFago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAo: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. MPMI 5:443

    Article  Google Scholar 

  • Khan RM (2013) Beneficial bacteria for biological control of fungal pathogens of cereals. In: Maheshwari DK (ed) Bacteria in agriculture: disease management. Springer, Berlin, pp 153–165

    Google Scholar 

  • Khan A, Williams KL, Nevalainen HK (2006) Control of plant-parasitic nematodes by paecilomyces lilacinus and monacrosporium lysipagum in pot trials. Biol Control 51(5):643–658

    Google Scholar 

  • Khan MR, Brien EO, Carney BF, Doohan FM (2010) A fluorescent Pseudomonas shows potential for the control of net blotch disease of barley. Biol Control 54:41–45

    Article  Google Scholar 

  • Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11:411–423

    Article  PubMed  CAS  Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kirk JJ, Deacon JW (1987) Control of the take all fungus Microdochium bolleyi and interactions involving M. bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant and Soil 98:231–237

    Article  Google Scholar 

  • Kloepper J, Tuzun S, Kuć J (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Tech 2:347–349

    Article  Google Scholar 

  • Knudsen IM, Hockenhull J, Jensen DF (1995) Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathol 44:467–477

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487

    Article  Google Scholar 

  • Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. MPMI 14:1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007a) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (G. hirusutum L.) and wheat (T. aestivum L.). J Basic Microbiol 47:436–439

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Mishra AK, Dubey N, Tripathi Y (2007b) Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int J Food Microbiol 115:159–164

    Article  PubMed  CAS  Google Scholar 

  • Kumar MKP, Amruta N, Manjula CP, Puneeth ME, Teli K (2017) Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Sci Tech 27(4):581–599. https://doi.org/10.1080/09583157.2017.1323323

    Article  Google Scholar 

  • Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P (2020) Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S Afr J Bot 134:1–424. https://doi.org/10.1016/j.sajb.2020.02.017

    Article  CAS  Google Scholar 

  • Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2020) Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 51:229–241

    Article  PubMed  CAS  Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol 48:395–417

    Article  PubMed  CAS  Google Scholar 

  • Manmeet M, Thind BS (2002) Management of bacterial blight of rice with bioagents. Plant Dis Res 17(1):21–28

    Google Scholar 

  • Mao W, Lewis JA, Hebbar PK, Lumsden RD (1997) Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Dis 81:450–454

    Article  PubMed  CAS  Google Scholar 

  • Marilley L, Aragno M (1999) Phytogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Mathre DE, Johnston RH, Grey WE (1998) Biological control of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici under field conditions using a Phialophora sp. Biocontrol Sci Tech 8:449–457

    Article  Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression and host resistance to fungal infection. MPMI 19:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Mukerji KG, Manoharachary C, Chamola BP (2002) Techniques in mycorrhizal studies, 1st edn. Kluwer Academic Publishers, London, pp 285–296

    Book  Google Scholar 

  • Naik K, Mishra S, Srichandan H et al (2020) Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustain Environ Res 30:10

    Article  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Nemec S (1994) Soil microflora associated with pot cultures of glomus intraradix-infQctQd Citrus reticulata. Agric Ecosyst Environ 1:299–306

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in the suppression of plant root pathogens. Microbiol Rev 56:662–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • O'Kennedy MM, Crampton BG, Lorito M, Chakauya E, Breese WA, Burger JT, Botha FC (2011) Expression of a β-1,3-glucanase from a biocontrol fungus in transgenic pearl millet. S Afr J Bot 2(77):335–345

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of Fengycin-type Lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    Article  PubMed  CAS  Google Scholar 

  • Ownley B, Griffin M, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Article  PubMed  CAS  Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26:971–977

    Article  Google Scholar 

  • Pathak MD, Khan ZR (1994) Insect pest of rice. International Rice Research Institute, Manila

    Google Scholar 

  • Paulitz TC, Matta A (2002) The role of the host in biological control of diseases. In: Integrated pest and disease management in greenhouse crops. Springer, Dordrecht. https://doi.org/10.1007/0-306-47585-5_28

    Chapter  Google Scholar 

  • Prasad R, Pham GH, Kumari R, Singh A, Yadav V, Sachdev M, Peskan T, Hehl S, Oelmuller R, Garg AP, Varma A (2005) Sebacinaceae: culturable mycorrhiza–like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin Heidelberg, pp 291–312

    Chapter  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmueller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53(12):1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247–260

    Chapter  Google Scholar 

  • Quilis J, Penas G, Messeguer J, Brugidou C, San Segundo B (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. MPMI 21:1215–1231

    Article  PubMed  CAS  Google Scholar 

  • Rais F, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. Plos One 12(11):e0187412. https://doi.org/10.1371/journal.pone.0187412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B Biol Sci 90:969. https://doi.org/10.1007/s40011-020-01168-0

    Article  CAS  Google Scholar 

  • Reiss A, Jorgensen LN (2017) Biological control of yellow rust of wheat (Puccinia striiformis) with serenade®ASO (Bacillus subtilis strain QST713). Crop Prot 93:1–8

    Article  Google Scholar 

  • Riley IT, Qi RD (2015) Annotated bibliography of cereal cyst nematodes (Heterodera avenae and H. filipjevi) in China, 1991 to 2014. Australas Nematol Newslett 26:1–46

    Google Scholar 

  • Riley IT, Hou SY, Chen SL (2010) Crop rotational and spatial determinants of variation in heterodera avenae (cereal cyst nematode) population density at village scale in spring cereals grown at high altitude on the Tibetan plateau, Qinghai, China. Australas Plant Pathol 39:424–430

    Article  Google Scholar 

  • Ryder LS, Talbot NJ (2015) Regulation of appressorium development in pathogenic fungi. Curr Opin Plant Biol 26:8–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahebani N, Hadavi N (2008) Biological control of the root knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem 40:2016–2020

    Article  CAS  Google Scholar 

  • Sartori M, Nesci A, Montemarani A, Barros G, García J, Etcheverry M (2017) Preliminary evaluation of biocontrol agents against maize pathogens Exserohilum turcicum and Puccinia sorghi in field assays. Agric Sci 8:1003–1013

    CAS  Google Scholar 

  • Shalaby AM, Hanna MM (1998) Preliminary studies on interactions between VA mycorrhizal fungus Glomus mosseae, Bradyrhizobium japonicum and Pseudomonas syringae in soybean plants. Acta Microb Polonica 47:385–391

    Google Scholar 

  • Shankar DI, Kurtböke DI, GillespieSasse LMJ, Rowland CY, Sivasithamparam K (1994) Possible roles of competition for thiamine, production of inhibitory compounds and hyphal interactions in suppression of the take all fungus by a sterile red fungus. Can J Microbiol 40:478–483

    Article  CAS  Google Scholar 

  • Sharma R, Minakshi CA (2017) Rhizosphere microbiome and its role in plant growth promotion. In: Purohit HJ, Shouche Y, Rahi P, Kalia VC (eds) Mining of microbial wealth and metagenomics. Springer, Singapore, pp 29–56

    Chapter  Google Scholar 

  • Sharma R, Chauhan A, Shirkot CK (2015) Characterization of plant growth promoting Bacillus strains and their potential as crop protectants against Phytophthora capsici in tomato. Biol Agric Hortic 31:230–244. https://doi.org/10.1080/01448765-2015-1009860

    Article  Google Scholar 

  • Shivanna MB, Meera MS, Hyakumachi M (1996) Role of root colonization ability of plant growth promoting fungi in the suppression of take all and common root rot of wheat. Crop Prot 15:497–504

    Article  Google Scholar 

  • Shreenivasa KR, Krishnappa K, Ravichandra NG, Ravikumar B, Kirankumar KC, Karuna K (2007) Optimization of arbuscular mycorrhizal fungus, Glomus fasciculatum culture against root- knot nematode, Meloidogyne incognita on tomato. AJMBES 9(1):117–121

    Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Shu Q, Ye G, Cui H, Cheng X, Xiang Y (2000) Transgenic rice plants with a synthetic Cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breed 6:433–439

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol 58(3):229–239

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69(2):167–179

    Article  CAS  Google Scholar 

  • Sood G, Kaushal R, Chauhan A, Gupta S (2018a) Indigenous plant growth–promoting Rhizobacteria and chemical fertilizers: impact on wheat (Triticum aestivum L.) productivity and soil properties in North Western Himalayan region. Crop Pasture Sci 69:460–468

    Article  CAS  Google Scholar 

  • Sood G, Kaushal R, Chauhan A, Gupta S (2018b) Effect of conjoint application of indigenous PGPR’s and chemical fertilizers on productivity of maize (Zea mays L.) under mid hills of Himachal Pradesh. J Plant Nutr 41:297–303

    Article  CAS  Google Scholar 

  • Suleiman RA, Kurt RA (2015) Current maize production, postharvest losses and the risk of mycotoxins contamination in Tanzania. In: Proceedings of the American Society of Agricultural and Biological Engineers annual international meeting, New Orleans, 26–29 July

    Google Scholar 

  • Tarus P, Thoruwa CL, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. BCSE 17(2):185–190. https://doi.org/10.4314/bcse.v17i2.61675

    Article  CAS  Google Scholar 

  • Tzortzakakis EA, Channer ADGR, Gowen HR, Ahmed R (2003) Studies on the potential use of Pasteuria penetrans as a biocontrol agent of root-knot nematodes (Meloidogyne spp.). Plant Pathol 46:157. https://doi.org/10.1046/j.1365-3059.1997.d01-211.x

    Article  Google Scholar 

  • Unnamalai N, Gnanamanickam SS (1984) Pseudomonas fluorescens is an antagonist to Xanthomonas citri (Hasse) dye, the incitant of citrus canker. Curr Sci 50:703–704

    Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • Vasudevan P, Kavitha S, Priyadarisini VB, Babujee L, Gnanamanickam SS (2002) Biological control of rice diseases. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Decker, New York, pp 11–32

    Google Scholar 

  • Velysamy P, Defago G, Thomashow LS, Gnanamanickam SS (2005) Role of 2, 4-diacetylphloroglucinol (DAPG) for plant disease control: its importance to rice bacterial blight suppression in India. In: Mayee CD (ed) Biotechnological approaches to the integrated management of crop diseases. Daya Publishing House, New Delhi, pp 182–191

    Google Scholar 

  • Verma S, Varma A, Rexer K, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. Et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1999) Evaluation of a powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci Tech 9:67–74

    Article  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vujanovic V, Goh YK (2009) Sphaerodes mycoparasitica sp. nov., a new biotrophic mycoparasite on Fusarium avenaceum, F. graminearum and F. oxysporum. Mycol Res 113:1172–1180

    Article  PubMed  Google Scholar 

  • Whipps JM, Davies KG (2000) Success in biological control of plant pathogens and nematodes by microorganisms. In: Gurr G, Wratten SD (eds) Measures of success in biological control. Kluwer Academic Publishers, Dordrecht, pp 231–269

    Chapter  Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents-progress, problems and potential. CAB International, Wallingford

    Google Scholar 

  • Yang MM, Wen SS, Mavrodi DV, Mavrodi OV, Wettstein DV, Thomashow LS, Guo JH, Weller DM (2014) Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology 104(3):248–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895. https://doi.org/10.3389/fmicb.2017.01895

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye G, Yao H, Cui H, Cheng X, Hu C (2001) Field evaluation of resistance of transgenic rice containing a synthetic Cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entomol 94:271–276

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Li Q, Fu G, Yuan G, Miao J, Lin W (2012) Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agric 11:90–99

    Article  CAS  Google Scholar 

  • Zhang SW, Gan YT, Xu BL (2014) Efficacy of Trichoderma longibrachiatum in the control of heterodera avenae. Biol Control 59(3):319–333

    Google Scholar 

  • Zhang J, Li Y, Yuan H, Sun B, Li H (2016) Biological control of the cereal cyst nematode (Heterodera fillipjevi) by Achromobacter xylosoxidans isolate 09X01 and Bacillus cereus isolate 09B18. Biol Control 92:1–6

    Article  Google Scholar 

  • Zhang S, Gan Y, Ji W, Xu B, Hou B, Liu J (2017) Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Front Plant Sci 8:1491. https://doi.org/10.3389/fpls.2017.01491

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minakshi, Sharma, S., Sharma, R., Chauhan, A. (2021). Plant–Microbe Interactions: Promoting Biocontrol of Phytopathogens of Cereal Grains. In: Kaushal, M., Prasad, R. (eds) Microbial Biotechnology in Crop Protection. Springer, Singapore. https://doi.org/10.1007/978-981-16-0049-4_13

Download citation

Publish with us

Policies and ethics