Skip to main content

Reliability-Based Assessment of Liquefaction Potential Using SPT Approach

  • Conference paper
  • First Online:
Local Site Effects and Ground Failures

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 117))

  • 357 Accesses

Abstract

Earthquake-induced liquefaction is one of the most complex and interesting phenomenon in Geotechnical Earthquake Engineering. Liquefaction is a very significant phenomenon in alluvial soil deposits consisting of silty sand or sandy silt type of soils. Many different methods are available at present to assess the liquefaction potential of soil using in situ field test data. Generally, field tests like SPT are carried out and liquefaction assessment is done for each borehole. Different boreholes provide different depths up to which soil has potential for liquefaction for particular peak ground acceleration (PGA) and magnitude of Earthquake. Maximum liquefaction depth obtained from different boreholes is used to convey the liquefaction depth of the area in consideration. The greatest drawback of this approach is that results of only one borehole are used to conservatively predict the liquefaction potential of the entire area and results of remaining boreholes are neglected as they have predicted lesser depth of liquefaction. In case some more boreholes are drilled and assessment is done then there is quite a good probability that liquefaction depth of that area will change depending upon the SPT results from new boreholes. In this paper liquefaction potential assessment of alluvial soil site is carried out using SPT-based approach as proposed by NCEER [5]. SPT data of 25 boreholes are analyzed and converted into the equivalent single borehole using probabilistic approach to assess the liquefaction potential of alluvial soil site. Probabilistic approach is used to assess 95 percentile values of all variables required to assess Liquefaction potential like SPT blow counts, percentage fines, and soil density. As there is uncertainty present in the evaluation of these parameters at the site and in the laboratory, it is appropriate to evaluate these parameters based on a probabilistic approach using the best fit probabilistic distribution curve. Parameters required for assessing CSR (Cyclic Stress Ratio) like overburden pressure and effective overburden pressure are also analyzed using probabilistic distribution curves considering data from 25 boreholes and converting them into an equivalent single borehole. Factor of Safety (FOS) obtained using 50, 95, and 98 percentile values of different parameters is compared for converted equivalent single borehole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. BIS (1981) IS 2131:1981, Method for standard penetration test for soils. Bureau of Indian Standards, New Delhi

    Google Scholar 

  2. Cetin KO, Seed RB, Kiureghian AD, Tokimatsu K, Harder LF Jr, Kayen RE, Moss RE (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng 130(12):1314–1340

    Article  Google Scholar 

  3. Haldar A, Mahadevan S (2000) Probability, reliability and statistical methods in engineering design. Wiley, New York

    Google Scholar 

  4. Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. Earthquake Engineering Research Institute, USA

    Google Scholar 

  5. NCEER (1997) Proceedings of the NCEER workshop on evaluation of liquefaction resistance of soils. National Centre for Earthquake Engineering Research, Report No. NCEER-97-0022, State University of New York at Buffalo, Buffalo, NY

    Google Scholar 

  6. Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. Am Soc Civ Eng J Soil Mech Found Div 97(SM9):1249–1273

    Article  Google Scholar 

  7. Seed HB, Idriss IM (1982) Ground motions and soil liquefaction during earthquakes. Monograph series. Earthquake Engineering Research Institute, University of California, Berkeley, CA

    Google Scholar 

  8. Seed HB, Tokimatsu K, Harder LF, Chung R (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. Am Soc Civ Eng J Geotech Eng Div 111(12):861–878

    Google Scholar 

  9. Youd TL, Idriss IM (2001) Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng 127(4):297–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhatia, G.S., Bhargava, K., Mondal, A. (2021). Reliability-Based Assessment of Liquefaction Potential Using SPT Approach. In: Sitharam, T.G., Jakka, R., Govindaraju, L. (eds) Local Site Effects and Ground Failures. Lecture Notes in Civil Engineering, vol 117. Springer, Singapore. https://doi.org/10.1007/978-981-15-9984-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9984-2_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9983-5

  • Online ISBN: 978-981-15-9984-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics