Skip to main content

Functional Dendritic Coatings for Biomedical Implants

  • Chapter
  • First Online:
Emerging Trends in Nanomedicine

Abstract

Dendrimers are class of highly branched nanostructures, consisting of a central core, a branched dendritic interior, and an exterior surface possessing multiple functional groups. Their well-defined compact size and shape, multivalent nature, and a high degree of molecular uniformity make them preferred choice of candidates for various biomedical and engineering applications. Dendrimers are utilized for biomedical implant coatings, solubility enhancement, drug-delivery systems, chemical sensors, medical diagnostics, catalysts, separation agents, high-performance polymers, building blocks of supermolecules and, etc. The unique property of dendritic macromolecules, in combination with the other characteristics, have shown significant potential as functional coatings for biomedical implants. These have been utilized in the form of (1) composite, (2) soft coating materials, and (3) template for fabricating biomedical implants. The dendrimer incorporated with implant have offered multifunctional roles including drug loading, antibacterial film, passivating layer, biocompatibility, and osseointegration, etc. This chapter discusses the current state-of-art on various applications of dendrimer for design and development of biomedical implants, wherein the main focus is on properties of dendrimer and their functional advantages. The strategies for fabricating the dendritic soft coating on various types of biomedical implant substrates and the development of dendritic nanocomposites, for their use as biomedical implants, will also be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou Neel, E. A., Aljabo, A., Strange, A., Ibrahim, S., Coathup, M., Young, A. M., et al. (2016). Demineralization-remineralization dynamics in teeth and bone. International Journal of Nanomedicine, 11, 4743–4763.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam, S., Ueki, K., Marukawa, K., Ohara, T., Hase, T., Takazakura, D., et al. (2007). Expression of bone morphogenetic protein 2 and fibroblast growth factor 2 during bone regeneration using different implant materials as an onlay bone graft in rabbit mandibles. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 103(1), 16–26.

    Article  PubMed  Google Scholar 

  • Araújo, R. V. D., Santos, S. D. S., Igne Ferreira, E., & Giarolla, J. (2018). New advances in general biomedical applications of PAMAM Dendrimers. Molecules (Basel, Switzerland), 23(11), 2849.

    Article  PubMed Central  CAS  Google Scholar 

  • Bae, J., Son, W.-S., Yoo, K.-H., Yoon, S.-Y., Bae, M.-K., Lee, D. J., et al. (2019). Effects of poly(amidoamine) dendrimer-coated mesoporous bioactive glass nanoparticles on dentin remineralization. Nanomaterials (Basel, Switzerland), 9(4), 591.

    Article  CAS  Google Scholar 

  • Balzani, V., Ceroni, P., Gestermann, S., Kauffmann, C., Gorka, M., & Vögtle, F. (2000). Dendrimers as fluorescent sensors with signal amplification. Chemical Communications, 10, 853–854.

    Article  Google Scholar 

  • Bengazi, F., Lang, N. P., Canciani, E., Viganò, P., Velez, J. U., & Botticelli, D. (2014). Osseointegration of implants with dendrimers surface characteristics installed conventionally or with Piezosurgery®. A comparative study in the dog. Clinical Oral Implants Research, 25(1), 10–15.

    Article  PubMed  Google Scholar 

  • Borba, M., Deluiz, D., Lourenço, E. J. V., Oliveira, L., & Tannure, P. N. (2017). Risk factors for implant failure: A retrospective study in an educational institution using GEE analyses. Brazilian Oral Research, 31, e69.

    Article  PubMed  Google Scholar 

  • Carlmark, A., Hawker, C., Hult, A., & Malkoch, M. (2009). New methodologies in the construction of dendritic materials. Chemical Society Reviews, 38(2), 352–362.

    Article  CAS  PubMed  Google Scholar 

  • Casado, C. M., Cuadrado, I., Morán, M., Alonso, B., Barranco, M., & Losada, J. (1999). Cyclic siloxanes and silsesquioxanes as cores and frameworks for the construction of ferrocenyl dendrimers and polymers. Applied Organometallic Chemistry, 13(4), 245–259.

    Article  CAS  Google Scholar 

  • Chen, L., Liang, K., Li, J., Wu, D., Zhou, X., & Li, J. (2013). Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. Archives of Oral Biology, 58(8), 975–980.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Yang, J., Li, J., Liang, K., He, L., Lin, Z., et al. (2014). Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomaterialia, 10(10), 4437–4446.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Li, W., Xu, K., Li, M., Dai, L., Shen, X., et al. (2018). Functionalizing titanium surface with PAMAM dendrimer and human BMP2 gene via layer-by-layer assembly for enhanced osteogenesis. Journal of Biomedical Materials Research Part A, 106(3), 706–717.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S., Wei, D., & Zhou, Y. (2012). The effect of oxidation time on the micro-arc titanium dioxide surface coating containing Si, Ca and Na. Procedia Engineering, 27, 713–717.

    Article  CAS  Google Scholar 

  • Das, K., Bose, S., & Bandyopadhyay, A. (2007). Surface modifications and cell–materials interactions with anodized Ti. Acta Biomaterialia, 3(4), 573–585.

    Article  CAS  PubMed  Google Scholar 

  • Dehghanghadikolaei, A., & Fotovvati, B. (2019). Coating techniques for functional enhancement of metal implants for bone replacement: A review. Materials (Basel, Switzerland), 12(11), 1795.

    Article  CAS  Google Scholar 

  • Dvornic, P. R., de Leuze-Jallouli, A. M., Owen, M. J., & Perz, S. V. (2000). Radially layered poly(amidoamine−organosilicon) dendrimers. Macromolecules, 33(15), 5366–5378.

    Article  CAS  Google Scholar 

  • Fu, H.-L., Cheng, S.-X., Zhang, X.-Z., & Zhuo, R.-X. (2008). Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate-mediated gene delivery. The Journal of Gene Medicine, 10(12), 1334–1342.

    Article  CAS  PubMed  Google Scholar 

  • Galli, C., Piemontese, M., Meikle, S. T., Santin, M., Macaluso, G. M., & Passeri, G. (2014). Biomimetic coating with phosphoserine-tethered poly(epsilon-lysine) dendrons on titanium surfaces enhances Wnt and osteoblastic differentiation. Clinical Oral Implants Research, 25(2), e133–e139.

    Article  PubMed  Google Scholar 

  • Gao, Y., Liang, K., Li, J., Yuan, H., Liu, H., Duan, X., et al. (2017). Effect and stability of poly(Amido amine)-induced biomineralization on dentinal tubule occlusion. Materials (Basel, Switzerland), 10(4), 384.

    Article  CAS  Google Scholar 

  • Garg, R., Mishra, N., Alexander, M., & Gupta, S. K. (2017). Implant survival between endo-osseous dental implants in immediate loading, delayed loading, and basal immediate loading dental implants a 3-year follow-up. Annals of Maxillofacial Surgery, 7(2), 237–244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiger, B. C., Wang, S., Padera, R. F., Grodzinsky, A. J., & Hammond, P. T. (2018). Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Science Translational Medicine, 10(469), eaat8800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorski, J. P. (2011). Biomineralization of bone: A fresh view of the roles of non-collagenous proteins. Frontiers in Bioscience (Landmark Edition), 16, 2598–2621.

    Article  CAS  Google Scholar 

  • Gou, Y., Yang, X., He, L., Xu, X., Liu, Y., Liu, Y., et al. (2017). Bio-inspired peptide decorated dendrimers for a robust antibacterial coating on hydroxyapatite. Polymer Chemistry, 8(29), 4264–4279.

    Article  CAS  Google Scholar 

  • Habibah, T. U. (2018). Hydroxyapatite dental material. StatPearls.

    Google Scholar 

  • Huang, D., & Wu, D. (2018). Biodegradable dendrimers for drug delivery. Materials Science and Engineering: C, 90, 713–727.

    Article  CAS  Google Scholar 

  • Jensen, O., Gabre, P., Sköld, U. M., & Birkhed, D. (2012). Is the use of fluoride toothpaste optimal? Knowledge, attitudes and behaviour concerning fluoride toothpaste and toothbrushing in different age groups in Sweden. Community Dentistry and Oral Epidemiology, 40(2), 175–184.

    Article  PubMed  Google Scholar 

  • Jia, R., Lu, Y., Yang, C.-W., Luo, X., & Han, Y. (2014). Effect of generation 4.0 polyamidoamine dendrimer on the mineralization of demineralized dentinal tubules in vitro. Archives of Oral Biology, 59(10), 1085–1093.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesharwani, P., & Iyer, A. K. (2015). Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discovery Today, 20, 536–547.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Zheng, W., Ma, W., Li, X., Li, S., Zhao, Y., et al. (2018). In-situ preparation of amino-terminated dendrimers on TiO2 films by generational growth for potential and efficient surface functionalization. Applied Surface Science, 459, 438–445.

    Article  CAS  Google Scholar 

  • Liang, K., Gao, Y., Li, J., Liao, Y., Xiao, S., Lv, H., et al. (2014). Effective dentinal tubule occlusion induced by polyhydroxy-terminated PAMAM dendrimer in vitro. RSC Advances, 4(82), 43496–43503.

    Article  CAS  Google Scholar 

  • Liang, K., Gao, Y., Xiao, S., Tay, F. R., Weir, M. D., Zhou, X., et al. (2019). Poly(amido amine) and rechargeable adhesive containing calcium phosphate nanoparticles for long-term dentin remineralization. Journal of Dentistry, 85, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Liang, K., Weir, M. D., Reynolds, M. A., Zhou, X., Li, J., & Xu, H. H. K. (2017). Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid. Materials Science and Engineering: C, 72, 7–17.

    Article  CAS  Google Scholar 

  • Liang, K., Weir, M. D., Xie, X., Wang, L., Reynolds, M. A., Li, J., et al. (2016). Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite. Dental Materials, 32(11), 1429–1440.

    Article  CAS  PubMed  Google Scholar 

  • Liang, K., Xiao, S., Wu, J., Li, J., Weir, M. D., Cheng, L., et al. (2018). Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges. Dental Materials, 34(4), 607–618.

    Article  CAS  PubMed  Google Scholar 

  • Lin, X., de Groot, K., Wang, D., Hu, Q., Wismeijer, D., & Liu, Y. (2015). A review paper on biomimetic calcium phosphate coatings. Open Biomedical Engineering Journal, 9, 56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, X., Xie, F., Ma, X., Hao, Y., Qin, H., & Long, J. (2017). Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. Journal of Biomaterials Science, Polymer Edition, 28(9), 846–863.

    Article  CAS  Google Scholar 

  • Liu, G.-X., & Puddephatt, R. J. (1996). Divergent route to organoplatinum or platinum−palladium dendrimers. Organometallics, 15(25), 5257–5259.

    Article  CAS  Google Scholar 

  • Lopez, A. I., Reins, R. Y., McDermott, A. M., Trautner, B. W., & Cai, C. (2009). Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Molecular BioSystems, 5(10), 1148–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maradit Kremers, H., Larson, D. R., Crowson, C. S., Kremers, W. K., Washington, R. E., Steiner, C. A., et al. (2015). Prevalence of Total hip and knee replacement in the United States. The Journal of Bone and Joint Surgery. American Volume, 97(17), 1386–1397.

    Article  PubMed  Google Scholar 

  • Market watch. (2019). Global dental implant market insights (Forecast to 2025). SKU ID: QYR-13728207.

    Google Scholar 

  • Marmillon, C., Gauffre, F., Gulik-Krzywicki, T., Loup, C., Caminade, A.-M., Majoral, J.-P., et al. (2001). Organophosphorus dendrimers as new Gelators for hydrogels. Angewandte Chemie International Edition, 40(14), 2626–2629.

    Article  CAS  PubMed  Google Scholar 

  • Meikle, S. T., Bianchi, G., Olivier, G., & Santin, M. (2013). Osteoconductive phosphoserine-modified poly(ε-lysine) dendrons: Synthesis, titanium oxide surface functionalization and response of osteoblast-like cell lines. Journal of the Royal Society Interface, 10(79), 20120765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montañez, M. I., Campos, L. M., Antoni, P., Hed, Y., Walter, M. V., Krull, B. T., et al. (2010). Accelerated growth of dendrimers via thiol−ene and esterification reactions. Macromolecules, 43(14), 6004–6013.

    Article  CAS  Google Scholar 

  • Naidu, B. N., Sorenson, M. E., Connolly, T. P., & Ueda, Y. (2003). Michael addition of amines and thiols to dehydroalanine amides: A remarkable rate acceleration in water. The Journal of Organic Chemistry, 68(26), 10098–10102.

    Article  CAS  PubMed  Google Scholar 

  • Nandi, S., Roy, S., Mukherjee, P., Kundu, B., De, D., & Basu, D. (2010). Orthopaedic applications of bone graft & graft substitutes: A review. Indian Journal of Medical Research, 132(1), 15–30.

    CAS  PubMed  Google Scholar 

  • Newkome, G. R., Moorefield, C. N., & Vogtle, F. (2001). Dendrimers derived by divergent procedures using 1→2 branching motifs: Sections 3.1–3.3.2.1. In Dendrimers and dendrons (pp. 51–76). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Nimesh, S. (2013). 13 - Dendrimers. In S. Nimesh (Ed.), Gene therapy (pp. 259–285). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C. L., et al. (2007). Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Advanced Functional Materials, 17(13), 2180–2188.

    Article  CAS  Google Scholar 

  • Park, K. H., Heo, S. J., Koak, J. Y., Kim, S. K., Lee, J. B., Kim, S. H., et al. (2007). Osseointegration of anodized titanium implants under different current voltages: A rabbit study. Journal of Oral Rehabilitation, 34(7), 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Raikar, S., Talukdar, P., Kumari, S., Panda, S. K., Oommen, V. M., & Prasad, A. (2017). Factors affecting the survival rate of dental implants: A retrospective study. Journal of International Society of Preventive and Community Dentistry, 7(6), 351–355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj, P. A., Johnsson, M., Levine, M. J., & Nancollas, G. H. (1992). Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. Journal of Biological Chemistry, 267(9), 5968–5976.

    Article  CAS  PubMed  Google Scholar 

  • Ramanujam, P., Poorni, S., Srinivasan, M. R., & Sureshbabu, N. M. (2019). Probiotics in dental caries prevention. The Indian Journal of Nutrition and Dietetics, 56(1), 22609.

    Article  Google Scholar 

  • Ratner, B. D. (2015). Chapter 3 - the biocompatibility of implant materials. In S. F. Badylak (Ed.), Host response to biomaterials (pp. 37–51). Oxford: Academic.

    Chapter  Google Scholar 

  • Reinstorf, A., Ruhnow, M., Gelinsky, M., Pompe, W., Hempel, U., Wenzel, K. W., et al. (2004). Phosphoserine--a convenient compound for modification of calcium phosphate bone cement collagen composites. Journal of Materials Science. Materials in Medicine, 15(4), 451–455.

    Article  CAS  PubMed  Google Scholar 

  • Renault, K., Fredy, J. W., Renard, P.-Y., & Sabot, C. (2018). Covalent modification of biomolecules through Maleimide-based labeling strategies. Bioconjugate Chemistry, 29(8), 2497–2513.

    Article  CAS  PubMed  Google Scholar 

  • Sali, S., Grabchev, I., Chovelon, J.-M., & Ivanova, G. (2006). Selective sensors for Zn2+ cations based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65(3), 591–597.

    Article  CAS  Google Scholar 

  • Satija, J., Gupta, U., & Jain, N. K. (2007). Pharmaceutical and biomedical potential of surface engineered dendrimers. Critical Reviews in Therapeutic Drug Carrier Systems, 24(3), 257–306.

    Article  CAS  PubMed  Google Scholar 

  • Satija, J., Sai, V. V. R., & Mukherji, S. (2011). Dendrimers in biosensors: Concept and applications. Journal of Materials Chemistry, 21(38), 14367–14386.

    Article  CAS  Google Scholar 

  • Staehlke, S., Lehnfeld, J., Schneider, A., Nebe, J. B., & Müller, R. (2019). Terminal chemical functions of polyamidoamine dendrimer surfaces and its impact on bone cell growth. Materials Science and Engineering: C, 101, 190–203.

    Article  CAS  Google Scholar 

  • Stübinger, S., Nuss, K., Bürki, A., Mosch, I., le Sidler, M., Meikle, S. T., et al. (2015). Osseointegration of titanium implants functionalised with phosphoserine-tethered poly(epsilon-lysine) dendrons: A comparative study with traditional surface treatments in sheep. Journal of Materials Science: Materials in Medicine, 26(2), 87.

    PubMed  Google Scholar 

  • Sunasee, R., & Narain, R. (2014). Covalent and noncovalent bioconjugation strategies. In Chemistry of bioconjugates (pp. 1–75). Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Swali, V., Wells, N. J., Langley, G. J., & Bradley, M. (1997). Solid-phase dendrimer synthesis and the generation of super-high-loading resin beads for combinatorial chemistry. The Journal of Organic Chemistry, 62(15), 4902–4903.

    Article  CAS  Google Scholar 

  • Tao, S., Fan, M., Xu, H. H. K., Li, J., He, L., Zhou, X., et al. (2017). The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Advances, 7(87), 54947–54955.

    Article  CAS  Google Scholar 

  • Terada, C., Komasa, S., Kusumoto, T., Kawazoe, T., & Okazaki, J. (2018). Effect of amelogenin coating of a nano-modified titanium surface on bioactivity. International Journal of Molecular Sciences, 19(5), 1274.

    Article  PubMed Central  CAS  Google Scholar 

  • Tomalia, D. A. (2005). The dendritic state. Materials Today, 8(3), 34–46.

    Article  CAS  Google Scholar 

  • Tomalia, D. A. (2010). Dendrons/dendrimers: Quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter, 6(3), 456–474.

    Article  CAS  Google Scholar 

  • Tomalia, D. A. (2012). Dendritic effects: Dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs). New Journal of Chemistry, 36(2), 264–281.

    Article  CAS  Google Scholar 

  • Tomisa, A. P., Launey, M. E., Lee, J. S., Mankani, M. H., Wegst, U. G., & Saiz, E. (2011). Nanotechnology approaches to improve dental implants. The International Journal of Oral & Maxillofacial Implants, 26(Suppl), 25–44; discussion 45-9.

    Google Scholar 

  • Veis, A., & Sabsay, B. (1983). Bone and tooth formation. Insights into mineralization strategies. In P. Westbroek & E. W. de Jong (Eds.), Biomineralization and biological metal accumulation: Biological and geological perspectives (pp. 273–284). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Walter, M. V., & Malkoch, M. (2012). Simplifying the synthesis of dendrimers: Accelerated approaches. Chemical Society Reviews, 41(13), 4593–4609.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Erasquin, U. J., Zhao, M., Ren, L., Zhang, M. Y., Cheng, G. J., et al. (2011). Stability, antimicrobial activity, and cytotoxicity of poly(amidoamine) dendrimers on titanium substrates. ACS Applied Materials & Interfaces, 3(8), 2885–2894.

    Article  CAS  Google Scholar 

  • Wang, X., Ma, J., Wang, Y., & He, B. (2001). Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials, 22(16), 2247–2255.

    Article  CAS  PubMed  Google Scholar 

  • Wickramathilaka, M. P., & Tao, B. Y. (2019). Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. Journal of Biological Engineering, 13(1), 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, D., Chen, X., Chen, T., Ding, C., Wu, W., & Li, J. (2015). Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials. Scientific Reports, 5, 11105–11105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Yang, J., Li, J., Chen, L., Tang, B., Chen, X., et al. (2013). Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials, 34(21), 5036–5047.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, S., Liang, K., Weir, M. D., Cheng, L., Liu, H., Zhou, X., et al. (2017). Combining bioactive multifunctional dental composite with PAMAM for root dentin remineralization. Materials (Basel, Switzerland), 10(1), 89.

    Article  CAS  Google Scholar 

  • Xie, F., Wei, X., Li, Q., & Zhou, T. (2016). In vivo analyses of the effects of polyamidoamine dendrimer on dentin biomineralization and dentinal tubules occlusion. Dental Materials Journal, 35(1), 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Yang, J., Liang, K., Li, J., He, L., Yang, X., et al. (2015). Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. Colloids and Surfaces B: Biointerfaces, 128, 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Yang, J., Lin, Z., Li, J., Liang, K., Yuan, H., et al. (2014). Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine. Colloids and Surfaces B: Biointerfaces, 115, 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Li, X., Xu, X., Li, J., Ding, C., Zhao, C., et al. (2018). One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine. Colloids and Surfaces B: Biointerfaces, 172, 760–768.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, J., Yadav, S., Satija, J., Agnihotri, S. (2021). Functional Dendritic Coatings for Biomedical Implants. In: Singh, S. (eds) Emerging Trends in Nanomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-9920-0_6

Download citation

Publish with us

Policies and ethics