Skip to main content

Translational Studies of Nanofibers-Based Scaffold for Skin and Bone Tissue Regeneration

  • Chapter
  • First Online:
Emerging Trends in Nanomedicine
  • 244 Accesses

Abstract

The area regenerative medicine targets to recreate, repair or replace the damaged body part into functional human tissue. Tissue engineering is a part of regenerative medicine that utilizes the principles and methods of engineering for the development of biological substitutes that can restore or improve the function of damaged tissues. It involves scaffolds combined with cells, growth factors or suitable biochemical signals promoting the growth and regeneration of damaged tissues and organs. Scaffolds are three-dimensional structure that mimics the native extracellular matrix (ECM) properties and provides structural support to the cells to regenerate. Several approaches have been developed for the fabrication of natural or synthetic polymer-based 3D scaffolds. Among them, nanofibers have been evaluated as promising tissue engineering scaffolds since they mimic the nanoscale properties of the native extracellular matrix and has high surface area to volume ratio. These features favors cell adhesion, proliferation, and differentiation which are highly desired for tissue engineering applications. This chapter summarizes the nanofibers’ innovative approaches used to mimic ECM properties and their potential applications for the skin and bone tissue engineering. Also, the successful translational studies of nanofibers for in vivo skin and bone regeneration have been elaborated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerssens, J., Boonen, S., Lowet, G., & Dequeker, J. (1998). Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology, 139(2), 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, S., Chantre, C. O., Gannon, A. R., Lind, J. U., Campbell, P. H., Grevesse, T., et al. (2018). Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Advanced Healthcare Materials, 7(9), 1701175.

    Article  CAS  Google Scholar 

  • Ai-Aql, Z., Alagl, A. S., Graves, D. T., Gerstenfeld, L. C., & Einhorn, T. A. (2008). Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. Journal of Dental Research, 87(2), 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Albrektsson, T., & Johansson, C. (2001). Osteoinduction, osteoconduction and osseointegration. European Spine Journal, 10(2), S96–S101.

    PubMed  PubMed Central  Google Scholar 

  • Alvarez-Barreto, J. F., Linehan, S. M., Shambaugh, R. L., & Sikavitsas, V. I. (2007). Flow perfusion improves seeding of tissue engineering scaffolds with different architectures. Annals of Biomedical Engineering, 35(3), 429–442.

    Article  PubMed  Google Scholar 

  • Anderson, M. L., Dhert, W. J., de Bruijn, J. D., Dalmeijer, R. A., Leenders, H., van Blitterswijk, C. A., et al. (1999). Critical size defect in the goat's os ilium: A model to evaluate bone grafts and substitutes. Clinical Orthopaedics and Related Research, 364, 231–239.

    Article  Google Scholar 

  • AszĂłdi, A., Bateman, J. F., Gustafsson, E., Boot-Handford, R., & Fässler, R. (2000). Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice. Cell Structure and Function, 25(2), 73–84.

    Article  PubMed  Google Scholar 

  • Atala, A., & Lanza, R. P. (2002). Methods of tissue engineering. Elsevier Science.

    Google Scholar 

  • Athanasiou, V. T., Papachristou, D. J., Panagopoulos, A., Saridis, A., Scopa, C. D., & Megas, P. (2009). Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Medical Science Monitor, 16(1), BR24–BR31.

    Google Scholar 

  • Bacakova, L., Novotná, K., & Parizek, M. (2014). Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiological Research, 63, S29.

    Article  CAS  PubMed  Google Scholar 

  • Badylak, S. F. (2002). The extracellular matrix as a scaffold for tissue reconstruction. Seminars in Cell & Developmental Biology, 13(5), 377–383.

    Article  CAS  Google Scholar 

  • Baht, G. S., Vi, L., & Alman, B. A. (2018). The role of the immune cells in fracture healing. Current Osteoporosis Reports, 16(2), 138–145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barapatre, A., Aadil, K. R., Tiwary, B. N., & Jha, H. (2015). In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. International Journal of Biological Macromolecules, 75, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Ben Arfa, A., Preziosi-Belloy, L., Chalier, P., & Gontard, N. (2007). Antimicrobial paper based on a soy protein isolate or modified starch coating including carvacrol and cinnamaldehyde. Journal of Agricultural and Food Chemistry, 55(6), 2155–2162.

    Article  CAS  Google Scholar 

  • Berndt, P., Fields, G. B., & Tirrell, M. (1995). Synthetic lipidation of peptides and amino acids: monolayer structure and properties. Journal of the American Chemical Society, 117(37), 9515–9522.

    Article  CAS  Google Scholar 

  • Bhattacharjee, P., Maiti, T. K., Bhattacharya, D., & Nandi, S. K. (2017). Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly (Đ„-caprolactone) nanofibrous scaffold. Colloids and Surfaces B: Biointerfaces, 156, 270–281.

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., & Zhang, M. (2005). Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 26(31), 6176–6184.

    Article  CAS  PubMed  Google Scholar 

  • Biedermann, T., Boettcher-Haberzeth, S., & Reichmann, E. (2013). Tissue engineering of skin for wound coverage. European Journal of Pediatric Surgery, 23(5), 375–382.

    Article  PubMed  Google Scholar 

  • Bigham, A., Dehghani, S., Shafiei, Z., & Nezhad, S. T. (2008). Xenogenic demineralized bone matrix and fresh autogenous cortical bone effects on experimental bone healing: radiological, histopathological and biomechanical evaluation. Journal of Orthopaedics and Traumatology, 9(2), 73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boskey, A., Spevak, L., Paschalis, E., Doty, S., & McKee, M. (2002). Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcified Tissue International, 71(2), 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Böttcher-Haberzeth, S., Biedermann, T., & Reichmann, E. (2010). Tissue engineering of skin. Burns, 36(4), 450–460.

    Article  PubMed  Google Scholar 

  • Bradshaw, M., Ho, D., Fear, M. W., Gelain, F., Wood, F. M., & Iyer, K. S. (2014). Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration. Scientific Reports, 4, 6903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitkreutz, D., Mirancea, N., & Nischt, R. (2009). Basement membranes in skin: unique matrix structures with diverse functions? Histochemistry and Cell Biology, 132(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Brydone, A., Meek, D., & Maclaine, S. (2010). Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1329–1343.

    Article  CAS  Google Scholar 

  • Campbell, C., & Parish, L. C. (2010). The decubitus ulcer: facts and controversies. Clinics in Dermatology, 28(5), 527–532.

    Article  PubMed  Google Scholar 

  • Carano, R. A., & Filvaroff, E. H. (2003). Angiogenesis and bone repair. Drug Discovery Today, 8(21), 980–989.

    Article  CAS  PubMed  Google Scholar 

  • Cardinal, M., Eisenbud, D. E., Armstrong, D. G., Zelen, C., Driver, V., Attinger, C., et al. (2009). Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds. Wound Repair and Regeneration, 17(3), 306–311.

    Article  PubMed  Google Scholar 

  • Carletti, E., Motta, A., & Migliaresi, C. (2011). Scaffolds for tissue engineering and 3D cell culture. In 3D cell culture (pp. 17–39). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Carter, M. J., Waycaster, C., Schaum, K., & Gilligan, A. M. (2014). Cost-effectiveness of three adjunct cellular/tissue-derived products used in the management of chronic venous leg ulcers. Value in Health, 17(8), 801–813.

    Article  PubMed  Google Scholar 

  • Catalano, E., Cochis, A., Varoni, E., Rimondini, L., & Azzimonti, B. (2013). Tissue-engineered skin substitutes: an overview. Journal of Artificial Organs, 16(4), 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Chacko, B. K., Chandler, R. T., Mundhekar, A., Khoo, N., Pruitt, H. M., Kucik, D. F., et al. (2005). Revealing anti-inflammatory mechanisms of soy isoflavones by flow: modulation of leukocyte-endothelial cell interactions. American Journal of Physiology-Heart and Circulatory Physiology, 289(2), H908–H915.

    Article  CAS  PubMed  Google Scholar 

  • Chaoxi, W., Hengjie, S., Anastasios, K., Kenneth, M. A., Najib, G., Shunqing, T., et al. (2018). Mechanically stable surface-hydrophobilized chitosan nanofibrous barrier membranes for guided bone regeneration. Biomedical Materials, 13(1), 015004.

    Google Scholar 

  • Chen, W., Xu, K., Tao, B., Dai, L., Yu, Y., Mu, C., et al. (2018). Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomaterialia, 74, 489–504.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, G., Ma, X., Li, J., Cheng, Y., Cao, Y., Wang, Z., et al. (2018). Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. International Journal of Pharmaceutics, 547(1–2), 656–666.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. S., Leong, K. W., & Yoo, H. S. (2008). In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 29(5), 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Chua, A. W. C., Khoo, Y. C., Tan, B. K., Tan, K. C., Foo, C. L., & Chong, S. J. (2016). Skin tissue engineering advances in severe burns: review and therapeutic applications. Burns Trauma, 4(1), 3.

    PubMed  PubMed Central  Google Scholar 

  • Clarke, B. (2008). Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology, 3, S131–S139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colnot, C., Huang, S., & Helms, J. (2006). Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice. Biochemical and Biophysical Research Communications, 350(3), 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Currey, J. D. (2002). Bones: structure and mechanics (pp. 1–380). Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Cutting, S., Pestes, J., Mckenzie, J., & Stirling, R. (2016). Solvent based 3D printing of hydroxyapatite laden scaffolds for bone tissue engineering. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/conf.FBIOE.2016.01.00145

  • Da, L.-C., Huang, Y.-Z., & Xie, H.-Q. (2017). Progress in development of bioderived materials for dermal wound healing. Regenerative Biomaterials, 4(5), 325–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damanhuri, M., Boyle, J., & Enoch, S. (2011). Advances in tissue-engineered skin substitutes. Wounds International, 2(1), 27–34.

    Google Scholar 

  • Das, S., Gurav, S., Soni, V., Ingle, A., Mohanty, B. S., Chaudhari, P., et al. (2018). Osteogenic nanofibrous coated titanium implant results in enhanced osseointegration: in vivo preliminary study in a rabbit model. Tissue Engineering & Regenerative Medicine, 15(2), 231–247.

    Article  CAS  Google Scholar 

  • Datta, H., Ng, W., Walker, J., Tuck, S., & Varanasi, S. (2008). The cell biology of bone metabolism. Journal of Clinical Pathology, 61(5), 577–587.

    Article  CAS  PubMed  Google Scholar 

  • De Kleer, V. (2006). Development of bone. In G. Sumner-Smith (Ed.), Bone in clinical orthopaedics (pp. 1–80). Philadelphia, PA: WB Saunders.

    Google Scholar 

  • Debels, H., Hamdi, M., Abberton, K., & Morrison, W. (2015). Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plastic and Reconstructive Surgery Global Open, 3(1), e284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Demidova-Rice, T. N., Hamblin, M. R., & Herman, I. M. (2012). Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Advances in Skin & Wound Care, 25(7), 304.

    Article  Google Scholar 

  • Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011, 290602.

    Article  Google Scholar 

  • Di Martino, A., Liverani, L., Rainer, A., Salvatore, G., Trombetta, M., & Denaro, V. (2011). Electrospun scaffolds for bone tissue engineering. Musculoskeletal Surgery, 95(2), 69–80.

    Article  PubMed  Google Scholar 

  • Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V. (2011). Bone regeneration: current concepts and future directions. BMC Medicine, 9(1), 66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitriou, R., Tsiridis, E., & Giannoudis, P. V. (2005). Current concepts of molecular aspects of bone healing. Injury, 36(12), 1392–1404.

    Article  PubMed  Google Scholar 

  • Dixit, S., Baganizi, D. R., Sahu, R., Dosunmu, E., Chaudhari, A., Vig, K., et al. (2017). Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. Journal of Biological Engineering, 11(1), 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160.

    Article  CAS  Google Scholar 

  • Dubson, A. (2017). U.S. patent application no. 15/592,372

    Google Scholar 

  • Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., et al. (2018). In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor. Journal of Biomedial Materials Research Part A, 106(3), 641–651.

    Article  CAS  Google Scholar 

  • Ehrler, D. M., & Vaccaro, A. R. (2000). The use of allograft bone in lumbar spine surgery. Clinical Orthopaedics and Related Research, 371, 38–45.

    Article  Google Scholar 

  • Eitel, F., Klapp, F., Jacobson, W., & Schweiberer, L. (1981). Bone regeneration in animals and in man. Archives of Orthopaedic and Traumatic Surgery, 99(1), 59–64.

    Article  CAS  Google Scholar 

  • Elsalanty, M. E., & Genecov, D. G. (2009). Bone grafts in craniofacial surgery. Craniomaxillofacial Trauma & Reconstruction, 2(3), 125.

    Article  Google Scholar 

  • Fang, X., & Reneker, D. (1997). DNA fibers by electrospinning. Journal of Macromolecular Science, Part B Physics, 36(2), 169–173.

    Article  Google Scholar 

  • Findley, K., & Grice, E. A. (2014). The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathogens, 10(11), e1004436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher, M. B., & Mauck, R. L. (2013). Tissue engineering and regenerative medicine: recent innovations and the transition to translation. Tissue Engineering Part B: Reviews, 19(1), 1–13.

    Article  CAS  Google Scholar 

  • Florencio-Silva, R., Sasso, G. R. D. S., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Research International, 421746.

    Google Scholar 

  • Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), 64–75.

    Article  CAS  Google Scholar 

  • Gao, W., Sun, L., Fu, X., Lin, Z., Xie, W., Zhang, W., et al. (2018). Enhanced diabetic wound healing by electrospun core-sheath fibers loaded with dimethyloxalylglycine. Journal of Materials Chemistry B, 6(2), 277–288.

    Article  PubMed  Google Scholar 

  • Gong, J., Arnold, J., & Cohn, S. (1964). The density of organic and volatile and non-volatile inorganic components of bone. The Anatomical Record, 149(3), 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Gong, T., Liu, T., Zhang, L., Ye, W., Guo, X., Wang, L., et al. (2018). Design redox-sensitive drug-loaded nanofibers for bone reconstruction. ACS Biomaterials Science & Engineering, 4(1), 240–247.

    Article  CAS  Google Scholar 

  • González-Consuegra, R. V., & VerdĂş, J. (2011). Quality of life in people with venous leg ulcers: an integrative review. Journal of Advanced Nursing, 67(5), 926–944.

    Article  PubMed  Google Scholar 

  • Greenwood, H. L., ThorsteinsdĂłttir, H., Perry, G., Renihan, J., Singer, P., & Daar, A. (2006). Regenerative medicine: new opportunities for developing countries. International Journal of Biotechnology, 8(1–2), 60–77.

    Article  Google Scholar 

  • Groeber, F., Holeiter, M., Hampel, M., Hinderer, S., & Schenke-Layland, K. (2011). Skin tissue engineering—in vivo and in vitro applications. Advanced Drug Delivery Reviews, 63(4–5), 352–366.

    Article  CAS  PubMed  Google Scholar 

  • Grose, R., & Werner, S. (2004). Wound-healing studies in transgenic and knockout mice. Molecular Biotechnology, 28(2), 147.

    Article  CAS  PubMed  Google Scholar 

  • Gugala, Z., & Gogolewski, S. (1999). Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. Journal of Orthopaedic Trauma, 13(3), 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Guizzardi, S., Di, M. S., Scandroglio, R., Ruggeri, A., & Savini, R. (1992). Implants of heterologous demineralized bone matrix for induction of posterior spinal fusion in rats. Spine, 17(6), 701–707.

    Article  CAS  PubMed  Google Scholar 

  • Gurtner, G. C., Callaghan, M. J., & Longaker, M. T. (2007). Progress and potential for regenerative medicine. Annual Review of Medicine, 58, 299–312.

    Article  CAS  PubMed  Google Scholar 

  • Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314.

    Article  CAS  PubMed  Google Scholar 

  • Halim, A. S., Khoo, T. L., & Yussof, S. J. M. (2010). Biologic and synthetic skin substitutes: an overview. The Indian Journal of Plastic Surgery, 43, S23.

    Article  PubMed  Google Scholar 

  • Hall Barrientos, I. J., Paladino, E., SzabĂł, P., Brozio, S., Hall, P. J., Oseghale, C. I., et al. (2017). Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications. International Journal of Pharmaceutics, 531(1), 67–79.

    Article  CAS  PubMed  Google Scholar 

  • Hamley, I. (2011). Self-assembly of amphiphilic peptides. Soft Matter, 7(9), 4122–4138.

    Article  CAS  Google Scholar 

  • Hay, D. (2011). The importance of stem cells and bioengineering in regenerative medicine. Biochip Tissue Chip, 2153-0777.1000.

    Google Scholar 

  • Hoseinpour Najar, M., Minaiyan, M., & Taheri, A. (2017). Preparation and in vivo evaluation of a novel gel-based wound dressing using arginine–alginate surface-modified chitosan nanofibers. Journal of Biomaterials Applications, 32(6), 689–701.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C., Fu, X., Liu, J., Qi, Y., Li, S., & Wang, H. (2012). The involvement of integrin β1 signaling in the migration and myofibroblastic differentiation of skin fibroblasts on anisotropic collagen-containing nanofibers. Biomaterials, 33(6), 1791–1800.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253.

    Article  CAS  Google Scholar 

  • Järbrink, K., Ni, G., Sönnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., et al. (2017). The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Systematic Reviews, 6(1), 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, X.-X., Zhang, Y., Liu, B., Zhang, S.-X., Wu, Y., Yu, X.-D., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105(10), 4120–4126.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E., & Yang, X. (2005). Mesenchymal stem cells and their future in bone repair. International Journal Of Advances in Rheumatology, 3(3), 84.

    Google Scholar 

  • Jouybar, A., Seyedjafari, E., Ardeshirylajimi, A., Zandi-Karimi, A., Feizi, N., Khani, M. M., et al. (2017). Enhanced skin regeneration by herbal extract-coated poly-L-lactic acid nanofibrous scaffold. Artificial Organs, 41(11), E296–E307.

    Article  CAS  PubMed  Google Scholar 

  • Jung, U. W., Lee, I. K., Park, J. Y., Thoma, D. S., Hämmerle, C. H., & Jung, R. E. (2015). The efficacy of BMP-2 preloaded on bone substitute or hydrogel for bone regeneration at peri-implant defects in dogs. Clinical Oral Implants Research, 26(12), 1456–1465.

    Article  PubMed  Google Scholar 

  • Kahn, S. A., Beers, R. J., & Lentz, C. W. (2011). Use of acellular dermal replacement in reconstruction of nonhealing lower extremity wounds. Journal of Burn Care & Research, 32(1), 124–128.

    Article  Google Scholar 

  • Kai, D., Ren, W., Tian, L., Chee, P. L., Liu, Y., Ramakrishna, S., et al. (2016). Engineering poly (lactide)–lignin nanofibers with antioxidant activity for biomedical application. ACS Sustainable Chemistry & Engineering, 4(10), 5268–5276.

    Article  CAS  Google Scholar 

  • Kalluri, R. (2003). Angiogenesis: basement membranes: structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 3(6), 422.

    Article  CAS  PubMed  Google Scholar 

  • Kanungo, I., Fathima, N. N., Rao, J. R., & Nair, B. U. (2013). Influence of PCL on the material properties of collagen based biocomposites and in vitro evaluation of drug release. Materials Science and Engineering: C, 33(8), 4651–4659.

    Article  CAS  Google Scholar 

  • Keating, J., & McQueen, M. (2001). Substitutes for autologous bone graft in orthopaedic trauma. The Journal of bone and joint surgery. British Volume, 83(1), 3–8.

    Article  CAS  PubMed  Google Scholar 

  • Kenawy, E.-R., Bowlin, G. L., Mansfield, K., Layman, J., Simpson, D. G., Sanders, E. H., et al. (2002). Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. Journal of Controlled Release, 81(1–2), 57–64.

    Article  CAS  Google Scholar 

  • Keskin, D., GĂĽndoÄźdu, C., & Atac, A. C. (2007). Experimental comparison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna. Medical Principles and Practice, 16(4), 299–305.

    Article  PubMed  Google Scholar 

  • Khandaker, M., Riahinezhad, S., Sultana, F., Morris, T., Wolf, R., & Vaughan, M. (2018). Effect of collagen-polycaprolactone nanofibers matrix coating on the in vitro cytocompatibility and in vivo bone responses of titanium. J Med Biol Eng, 38(2), 197–210.

    Article  PubMed  Google Scholar 

  • Khojasteh, A., Fahimipour, F., Jafarian, M., Sharifi, D., Jahangir, S., Khayyatan, F., et al. (2017). Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1767–1777.

    Article  CAS  PubMed  Google Scholar 

  • Khosla, S., Westendorf, J. J., & Oursler, M. J. (2008). Building bone to reverse osteoporosis and repair fractures. The Journal of Clinical Investigation, 118(2), 421–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.-Y., Yang, B.-E., Ahn, J.-H., Park, S. O., & Shim, H.-W. (2014). Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects. Journal of Advanced Prosthodontics, 6(6), 539–546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolar, P., Schmidt-Bleek, K., Schell, H., Gaber, T., Toben, D., Schmidmaier, G., et al. (2010). The early fracture hematoma and its potential role in fracture healing. Tissue Engineering Part B: Reviews, 16(4), 427–434.

    Article  Google Scholar 

  • Kuhn, J. L., Goldstein, S. A., Ciarelli, M. J., & Matthews, L. S. (1989). The limitations of canine trabecular bone as a model for human: a biomechanical study. Journal of Biomechanics, 22(2), 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65(4), 457–470.

    Article  CAS  PubMed  Google Scholar 

  • Kyle, S., Aggeli, A., Ingham, E., & McPherson, M. J. (2009). Production of self-assembling biomaterials for tissue engineering. Trends in Biotechnology, 27(7), 423–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagoa, A. L., Wedemeyer, C., von Knoch, M., Löer, F., & Epple, M. (2008). A strut graft substitute consisting of a metal core and a polymer surface. Journal of Materials Science: Materials in Medicine, 19(1), 417–424.

    CAS  PubMed  Google Scholar 

  • Langer, A., & Rogowski, W. (2009). Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers. BMC Health Services Research, 9(1), 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lataillade, J.-J., Magne, B., Bey, E., Leclerc, T., & Trouillas, M. (2017). L’ingĂ©nierie cutanĂ©e pour le traitement des brĂ»lures graves. Transfusion Clinique et Biologique, 24(3), 245–250.

    Article  PubMed  Google Scholar 

  • Lee, F.-Y., Lee, D., Lee, T.-C., Chen, J.-K., Wu, R.-C., Liu, K.-C., et al. (2017). Fabrication of multi-layered lidocaine and epinephrine-eluting PLGA/collagen nanofibers: in vitro and in vivo study. Polymers, 9(9), 416.

    Article  PubMed Central  CAS  Google Scholar 

  • Lee, K. Y., & Yuk, S. H. (2007). Polymeric protein delivery systems. Progress in Polymer Science, 32(7), 669–697.

    Article  CAS  Google Scholar 

  • Lee, S.-H., & Shin, H. (2007). Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 59(4–5), 339–359.

    Article  CAS  PubMed  Google Scholar 

  • Levengood, S. L., Erickson, A. E., Chang, F.-C., & Zhang, M. (2017). Chitosan–poly (caprolactone) nanofibers for skin repair. Journal of Materials Chemistry B, 5(9), 1822–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., & Wang, C. (2013). Effects of working parameters on electrospinning. In One-dimensional nanostructures (pp. 15–28). Berlin: Springer.

    Chapter  Google Scholar 

  • Liebschner, M. A. (2004). Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials, 25(9), 1697–1714.

    Article  CAS  PubMed  Google Scholar 

  • Lindblad, W. J. (2008). Considerations for selecting the correct animal model for dermal wound-healing studies. Journal of Biomaterials Science, Polymer Edition, 19(8), 1087–1096.

    Article  CAS  Google Scholar 

  • Liu, B., Zhang, H., Xu, C., Yang, G., Tao, J., Huang, J., et al. (2011). Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons. Brain Research, 1375, 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Luo, G., Wang, Y., He, W., Liu, T., Zhou, D., et al. (2017). Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo. International Journal of Nanomedicine, 12, 6827–6840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loi, F., CĂłrdova, L. A., Pajarinen, J., Lin, T.-H., Yao, Z., & Goodman, S. B. (2016). Inflammation, fracture and bone repair. Bone, 86, 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luu, Y., Kim, K., Hsiao, B., Chu, B., & Hadjiargyrou, M. (2003). Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. Journal of Controlled Release, 89(2), 341–353.

    Article  CAS  PubMed  Google Scholar 

  • Ma, P. X., & Zhang, R. (1999). Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research, 46(1), 60–72.

    Article  CAS  PubMed  Google Scholar 

  • MacNeil, S. (2008). Biomaterials for tissue engineering of skin. Materials Today, 11(5), 26–35.

    Article  CAS  Google Scholar 

  • Mao, A. S., & Mooney, D. J. (2015). Regenerative medicine: current therapies and future directions. Proceedings of the National Academy of Sciences, 112(47), 14452–14459.

    Article  CAS  Google Scholar 

  • Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551–555.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martini, L., Fini, M., Giavaresi, G., & Giardino, R. (2001). Sheep model in orthopedic research: a literature review. Comparative Medicine, 51(4), 292–299.

    CAS  PubMed  Google Scholar 

  • Mason, C., & Dunnill, P. (2008). A brief definition of regenerative medicine. Regenerative Medicine, 3(1), 1–5.

    Article  PubMed  Google Scholar 

  • Matsuo, K., & Irie, N. (2008). Osteoclast–osteoblast communication. Archives of Biochemistry and Biophysics, 473(2), 201–209.

    Article  CAS  PubMed  Google Scholar 

  • McKibbin, B. (1978). The biology of fracture healing in long bones. Journal of Bone and Joint Surgery British Vol, 60(2), 150–162.

    Article  Google Scholar 

  • Metcalfe, A. D., & Ferguson, M. W. (2007). Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. Journal of the Royal Society Interface, 4(14), 413–437.

    Article  CAS  PubMed  Google Scholar 

  • Midwood, K. S., Williams, L. V., & Schwarzbauer, J. E. (2004). Tissue repair and the dynamics of the extracellular matrix. The International Journal of Biochemistry & Cell Biology, 36(6), 1031–1037.

    Article  CAS  Google Scholar 

  • Miszuk, J. M., Xu, T., Yao, Q., Fang, F., Childs, J. D., Hong, Z., et al. (2018). Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Applied Materials Today, 10, 194–202.

    Article  PubMed  Google Scholar 

  • Miyamoto, S., KATHZ, B. Z., Lafrenie, R. M., & Yamada, K. M. (1998). Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Annals of the New York Academy of Sciences, 857(1), 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi, Z., Sharif Zak, M., Majdi, H., Seidi, K., Barati, M., Akbarzadeh, A., et al. (2017). The effect of chrysin-loaded nanofiber on wound healing process in male rat. Chemical Biology & Drug Design, 90(6), 1106–1114.

    Article  CAS  Google Scholar 

  • Mohammadian, F., Abhari, A., Nejati-Koshki, K., & Akbarzadeh, A. (2017). New state of nanofibers in regenerative medicine. Artificial Cells Nanomedicine and Biotechnology, 45(2), 204–210.

    Google Scholar 

  • Montagna, W., & Yun, J. S. (1964). The skin of the domestic pig. Journal of Investigative Dermatology, 43(1), 11–21.

    Article  Google Scholar 

  • Moshiri, A., & Oryan, A. (2012). Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns. Hard Tissue, 1(2), 11.

    Article  Google Scholar 

  • Munster, A. M., Weiner, S. H., & Spence, R. J. (1990). Cultured epidermis for the coverage of massive burn wounds. A single center experience. Annals of Surgery, 211(6), 676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, L. S., Bhattacharyya, S., & Laurencin, C. T. (2004). Development of novel tissue engineering scaffolds via electrospinning. Expert Opinion on Biological Therapy, 4(5), 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Nandi, S., Roy, S., Mukherjee, P., Kundu, B., De, D., & Basu, D. (2010). Orthopaedic applications of bone graft & graft substitutes: a review. The Indian Journal of Medical Research, 132(1), 15–30.

    CAS  PubMed  Google Scholar 

  • Nathoo, R., Howe, N., & Cohen, G. (2014). Skin substitutes: an overview of the key players in wound management. The Journal of Clinical and Aesthetic Dermatology, 7(10), 44.

    PubMed  PubMed Central  Google Scholar 

  • Newman, E., Turner, A., & Wark, J. (1995). The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone, 16(4), S277–S284.

    Article  Google Scholar 

  • Ng, C. C., Cheng, Y.-L., & Pennefather, P. S. (2004). Properties of a self-assembled phospholipid membrane supported on lipobeads. Biophysical Journal, 87(1), 323–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, R., Zang, R., Yang, K. K., Liu, N., & Yang, S.-T. (2012). Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Advances, 2(27), 10110–10124.

    Article  CAS  Google Scholar 

  • Nicholas, M. N., Jeschke, M. G., & Amini-Nik, S. (2016). Cellularized bilayer pullulan-gelatin hydrogel for skin regeneration. Tissue Engineering Part A, 22(9–10), 754–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam, R., & Mahanta, B. (2014). An overview of various biomimetic scaffolds: challenges and applications in tissue engineering. Journal of Tissue Science & Engineering, 5(2), 1.

    Google Scholar 

  • O'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95.

    Article  CAS  Google Scholar 

  • Oikarinen, J. (1982). Experimental spinal fusion with decalcified bone matrix and deep-frozen allogeneic bone in rabbits. Clinical Orthopaedics and Related Research, 162, 210–218.

    Article  Google Scholar 

  • O'loughlin, P. F., Morr, S., Bogunovic, L., Kim, A. D., Park, B., & Lane, J. M. (2008). Selection and development of preclinical models in fracture-healing research. Journal of Bone and Joint Surgery, 90, 79–84.

    Google Scholar 

  • Oryan, A., Alidadi, S., & Moshiri, A. (2013). Current concerns regarding healing of bone defects. Hard Tissue, 2(2), 1–12.

    Article  Google Scholar 

  • Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. (2014). Bone regenerative medicine: classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research, 9(1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostrovidov, S., Shi, X., Zhang, L., Liang, X., Kim, S. B., Fujie, T., et al. (2014). Myotube formation on gelatin nanofibers–multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 35(24), 6268–6277.

    Article  CAS  PubMed  Google Scholar 

  • Ozaki, A., Tsunoda, M., Kinoshita, S., & Saura, R. (2000). Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. Journal of Orthopaedic Science, 5(1), 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Parikh, S. (2002). Bone graft substitutes: past, present, future. Journal of Postgraduate Medicine, 48(2), 142.

    CAS  PubMed  Google Scholar 

  • Pearce, A., Richards, R., Milz, S., Schneider, E., & Pearce, S. (2007). Animal models for implant biomaterial research in bone: a review. European Cells & Materials, 13(1), 1–10.

    Article  CAS  Google Scholar 

  • Peñta-Ramos, E., & Xiong, Y. (2002). Antioxidant activity of soy protein hydrolysates in a liposomal system. Journal of Food Science, 67(8), 2952–2956.

    Article  Google Scholar 

  • Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering, 12(5), 1197–1211.

    Article  CAS  PubMed  Google Scholar 

  • Pina, S., Oliveira, J. M., & Reis, R. L. (2015). Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials, 27(7), 1143–1169.

    Article  CAS  PubMed  Google Scholar 

  • PinzĂłn-GarcĂ­a, A. D., Cassini-Vieira, P., Ribeiro, C. C., de Matos Jensen, C. E., Barcelos, L. S., Cortes, M. E., et al. (2017). Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1938–1949.

    Article  PubMed  CAS  Google Scholar 

  • Polo-Corrales, L., Latorre-Esteves, M., & Ramirez-Vick, J. E. (2014). Scaffold design for bone regeneration. Journal of Nanoscience and Nanotechnology, 14(1), 15–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad, P., Kumar, A., Quadri, J. A., Purkayastha, K., Kumari, M., & Barik, M. (2017). Regenerative medicine: a new Dawn for male reproductive issues. Advances in Tissue Engineering & Regenerative Medicine, 3, 290–294.

    Google Scholar 

  • Rahmani Del Bakhshayesh, A., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., et al. (2018). Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial Cells Nanomedicine and Biotechnology, 46(4), 691–705.

    Google Scholar 

  • Rauch, F., Lauzier, D., Croteau, S., Travers, R., Glorieux, F., & Hamdy, R. (2000). Temporal and spatial expression of bone morphogenetic protein-2,-4, and-7 during distraction osteogenesis in rabbits. Bone, 27(3), 453–459.

    Article  CAS  PubMed  Google Scholar 

  • Ravaglioli, A., Krajewski, A., Celotti, G., Piancastelli, A., Bacchini, B., Montanari, L., et al. (1996). Mineral evolution of bone. Biomaterials, 17(6), 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Reesi, F., Minaiyan, M., & Taheri, A. (2018). A novel lignin-based nanofibrous dressing containing arginine for wound-healing applications. Drug Delivery and Translational Research, 8(1), 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Reichert, J. C., Saifzadeh, S., Wullschleger, M. E., Epari, D. R., SchĂĽtz, M. A., Duda, G. N., et al. (2009). The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 30(12), 2149–2163.

    Article  CAS  PubMed  Google Scholar 

  • Reid, R. R., Said, H. K., Mogford, J. E., & Mustoe, T. A. (2004). The future of wound healing: pursuing surgical models in transgenic and knockout mice. Journal of the American College of Surgeons, 199(4), 578–585.

    Article  PubMed  Google Scholar 

  • Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547.

    Article  CAS  Google Scholar 

  • Rhett, J. M., Ghatnekar, G. S., Palatinus, J. A., O’Quinn, M., Yost, M. J., & Gourdie, R. G. (2008). Novel therapies for scar reduction and regenerative healing of skin wounds. Trends in Biotechnology, 26(4), 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Robling, A. G., Castillo, A. B., & Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. The Annual Review of Biomedical Engineering, 8, 455–498.

    Article  CAS  PubMed  Google Scholar 

  • Rockwell, W. B., Daane, S., Zakhireh, M., & Carroll, K. L. (2003). Human skin allograft used to treat open wounds after club foot release. Annals of Plastic Surgery, 51(6), 593–597.

    Article  PubMed  Google Scholar 

  • Rose, F. R., & Oreffo, R. O. (2002). Bone tissue engineering: hope vs hype. Biochemical and Biophysical Research Communications, 292(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Roussy, Y., Bertrand Duchesne, M. P., & Gagnon, G. (2007). Activation of human platelet-rich plasmas: effect on growth factors release, cell division and in vivo bone formation. Clinical Oral Implants Research, 18(5), 639–648.

    Article  PubMed  Google Scholar 

  • Santana-Melo, G. F., Rodrigues, B. V. M., da Silva, E., Ricci, R., Marciano, F. R., Webster, T. J., et al. (2017). Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids and Surfaces B: Biointerfaces, 155, 544–552.

    Article  CAS  PubMed  Google Scholar 

  • Sara, U.-D., & Ardeshir, B. (2017). Non-animal models of wound healing in cutaneous repair: in silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin. Wound Repair and Regeneration, 25(2), 164–176.

    Article  Google Scholar 

  • Scaglione, M., Fabbri, L., Dell’Omo, D., Gambini, F., & Guido, G. (2014). Long bone nonunions treated with autologous concentrated bone marrow-derived cells combined with dried bone allograft. Musculoskeletal Surgery, 98(2), 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Schindeler, A., McDonald, M. M., Bokko, P., & Little, D. G. (2008). Bone remodeling during fracture repair: the cellular picture. Seminars in Cell & Developmental Biology, 19(5), 459–466.

    Article  CAS  Google Scholar 

  • Schmitz, J. P., & Hollinger, J. O. (1986). The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedics and Related Research, 205, 299–308.

    Article  Google Scholar 

  • Schneider, A., Garlick, J. A., & Egles, C. (2008). Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One, 3(1), e1410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schroeder, J. E., & Mosheiff, R. (2011). Tissue engineering approaches for bone repair: concepts and evidence. Injury, 42(6), 609–613.

    Article  PubMed  Google Scholar 

  • Schwarzbauer, J. E. (1991). Fibronectin: from gene to protein. Current Opinion in Cell Biology, 3(5), 786–791.

    Article  CAS  PubMed  Google Scholar 

  • Shafiee, A., & Atala, A. (2017). Tissue engineering: toward a new era of medicine. Annual Review of Medicine, 68, 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A., & Amini-Nik, S. (2017). The role of phytochemicals in the inflammatory phase of wound healing. International Journal of Molecular Sciences, 18(5), 1068.

    Article  PubMed Central  CAS  Google Scholar 

  • Shakespeare, P. (2001). Burn wound healing and skin substitutes. Burns, 27(5), 517–522.

    Article  CAS  PubMed  Google Scholar 

  • Sheikholeslam, M., Wright, M. E., Jeschke, M. G., & Amini-Nik, S. (2018). Biomaterials for skin substitutes. Advanced Healthcare Materials, 7(5), 1700897.

    Article  CAS  Google Scholar 

  • Shin, Y., Hohman, M., Brenner, M., & Rutledge, G. (2001a). Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer, 42(25), 09955–09967.

    Article  CAS  Google Scholar 

  • Shin, Y., Hohman, M., Brenner, M. P., & Rutledge, G. (2001b). Electrospinning: a whipping fluid jet generates submicron polymer fibers. Applied Physics Letters, 78(8), 1149–1151.

    Article  CAS  Google Scholar 

  • Shores, J. T., Gabriel, A., & Gupta, S. (2007). Skin substitutes and alternatives: a review. Advances in Skin & Wound Care, 20(9), 493–508.

    Article  Google Scholar 

  • Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England Journal of Medicine, 341(10), 738–746.

    Article  CAS  PubMed  Google Scholar 

  • Sivashankari, P. R., & Prabaharan, M. (2016). Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. International Journal of Biological Macromolecules, 93, 1382–1389.

    Article  CAS  PubMed  Google Scholar 

  • Sorrell, J. M., Baber, M. A., & Caplan, A. I. (2008). Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions. Wound Repair and Regeneration, 16(2), 300–309.

    Article  PubMed  Google Scholar 

  • Sun, L., Gao, W., Fu, X., Shi, M., Xie, W., Zhang, W., et al. (2018). Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomaterials Science, 6(2), 340–349.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Cheng, L., Zhao, J., Jin, R., Sun, B., Shi, Y., et al. (2014). bFGF-grafted electrospun fibrous scaffolds via poly (dopamine) for skin wound healing. Journal of Materials Chemistry B, 2(23), 3636–3645.

    Article  CAS  PubMed  Google Scholar 

  • Supp, D. M., & Boyce, S. T. (2005). Engineered skin substitutes: practices and potentials. Clinics in Dermatology, 23(4), 403–412.

    Article  PubMed  Google Scholar 

  • Takeo, M., Lee, W., & Ito, M. (2015). Wound healing and skin regeneration. Cold Spring Harbor Perspectives in Medicine, 5(1), a023267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanha, S., Rafiee-Tehrani, M., Abdollahi, M., Vakilian, S., Esmaili, Z., Naraghi, Z. S., et al. (2017). G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo. Journal of Biomedical Materials Research Part A, 105(10), 2830–2842.

    Google Scholar 

  • Taylor, W. R., Ehrig, R. M., Heller, M. O., Schell, H., Seebeck, P., & Duda, G. N. (2006). Tibio-femoral joint contact forces in sheep. Journal of Biomechanics, 39(5), 791–798.

    Article  PubMed  Google Scholar 

  • Tecilla, P., Dixon, R. P., Slobodkin, G., Alavi, D. S., Waldeck, D. H., & Hamilton, A. D. (1990). Hydrogen-bonding self-assembly of multichromophore structures. Journal of the American Chemical Society, 112(25), 9408–9410.

    Article  CAS  Google Scholar 

  • Thomas, M., & Puleo, D. (2011). Infection, inflammation, and bone regeneration: a paradoxical relationship. Journal of Dental Research, 90(9), 1052–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tortora, G. J., & Derrickson, B. H. (2008). Principles of anatomy and physiology. New York: Wiley.

    Google Scholar 

  • Tracy, L. E., Minasian, R. A., & Caterson, E. (2016). Extracellular matrix and dermal fibroblast function in the healing wound. Advances in Wound Care, 5(3), 119–136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vacanti, J. (2010). Tissue engineering and regenerative medicine: from first principles to state of the art. Journal of Pediatric Surgery, 45(2), 291–294.

    Article  PubMed  Google Scholar 

  • Vagaská, B., Bačáková, L., Filovaá, E., & BalĂ­k, K. (2010). Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiological Research, 59(3), 309–322.

    Article  PubMed  Google Scholar 

  • Varkey, M., Ding, J., & Tredget, E. E. (2015). Advances in skin substitutes—potential of tissue engineered skin for facilitating anti-fibrotic healing. Journal of Functional Biomaterials, 6(3), 547–563.

    Google Scholar 

  • Vasita, R., & Katti, D. S. (2006). Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine, 1(1), 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vatankhah, E., Semnani, D., Prabhakaran, M. P., Tadayon, M., Razavi, S., & Ramakrishna, S. (2014). Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomaterialia, 10(2), 709–721.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan, J., & Kim, S.-K. (2014). Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. Journal of Biomedical Nanotechnology, 10(10), 3124–3140.

    Article  CAS  PubMed  Google Scholar 

  • Vig, K., Chaudhari, A., Tripathi, S., Dixit, S., Sahu, R., Pillai, S., et al. (2017). Advances in skin regeneration using tissue engineering. International Journal of Molecular Sciences, 18(4), 789.

    Article  PubMed Central  CAS  Google Scholar 

  • Vincent, F., David, S., Jisun, C., Janet, B., Polly, C., & B., R. A., et al. (2004). Full-thickness wounding of the mouse tail as a model for delayed wound healing: accelerated wound closure in Smad3 knock-out mice. Wound Repair and Regeneration, 12(3), 320–326.

    Google Scholar 

  • Wang, M., Roy, A. K., & Webster, T. J. (2017). Development of chitosan/poly (vinyl alcohol) electrospun nanofibers for infection related wound healing. Frontiers in Physiology, 7, 683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Mabrey, J. D., & Agrawal, C. (1998). An interspecies comparison of bone fracture properties. Bio-medical Materials and Engineering, 8(1), 1–9.

    CAS  PubMed  Google Scholar 

  • Whang, K., Healy, K., Elenz, D., Nam, E., Tsai, D., Thomas, C., et al. (1999). Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Engineering, 5(1), 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Whitesides, G. M., & Boncheva, M. (2002). Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences, 99(8), 4769–4774.

    Article  CAS  Google Scholar 

  • Whitesides, G. M., Mathias, J. P., & Seto, C. T. (1991). Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 254(5036), 1312–1319.

    Article  CAS  PubMed  Google Scholar 

  • Witte, M. B., & Barbul, A. (2002). Role of nitric oxide in wound repair. The American Journal of Surgery, 183(4), 406–412.

    Article  CAS  PubMed  Google Scholar 

  • Wu, E. C., Zhang, S., & Hauser, C. A. (2012). Self-assembling peptides as cell-interactive scaffolds. Advanced Functional Materials, 22(3), 456–468.

    Article  CAS  Google Scholar 

  • Wu, S., Liu, X., Yeung, K. W., Guo, H., Li, P., Hu, T., et al. (2013). Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology, 233, 13–26.

    Article  CAS  Google Scholar 

  • Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214(2), 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Z., Paras, C. B., Weng, H., Punnakitikashem, P., Su, L.-C., Vu, K., et al. (2013). Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomaterialia, 9(12), 9351–9359.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Su, P., Chen, X., Meng, Y., Yu, W., Xiang, A. P., et al. (2011). Biocompatibility and osteogenesis of biomimetic bioglass-collagen-phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials, 32(4), 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  • Xue, M., & Jackson, C. J. (2015). Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care, 4(3), 119–136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, G., Yu, J., Qiu, Y., Yi, X., Lu, J., Zhou, X., et al. (2011). Self-assembly of electrospun polymer nanofibers: A general phenomenon generating honeycomb-patterned nanofibrous structures. Langmuir, 27(8), 4285–4289.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Tsang, K. Y., Tang, H. C., Chan, D., & Cheah, K. S. (2014). Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proceedings of the National Academy of Sciences, 111(33), 12097–12102.

    Article  CAS  Google Scholar 

  • Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics, 90(9), 4836–4846.

    Article  CAS  Google Scholar 

  • Yasko, A. W., Lane, J., Fellinger, E., Rosen, V., Wozney, J., & Wang, E. (1992). The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. The Journal of Bone and Joint Surgery. American Volume, 74(5), 659–670.

    Article  CAS  PubMed  Google Scholar 

  • Yen, A., & Yelick, P. (2011). Dental tissue regeneration–a mini-review. Gerontology, 57(1), 85–94.

    Article  PubMed  Google Scholar 

  • Yin, L., Wang, K., Lv, X., Sun, R., Yang, S., Yang, Y., et al. (2017). The fabrication of an ICA-SF/PLCL nanofibrous membrane by coaxial electrospinning and its effect on bone regeneration in vitro and in vivo. Scientific Reports, 7(1), 8616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, P., Guo, J., Li, J., Shi, X., Wang, L., Chen, W., et al. (2017). Repair of skin defects with electrospun collagen/chitosan and fibroin/chitosan compound nanofiber scaffolds compared with gauze dressing. Journal of Biomaterials and Tissue Engineering, 7(5), 386–392.

    Article  Google Scholar 

  • Yuan, T. T., DiGeorge Foushee, A. M., Johnson, M. C., Jockheck-Clark, A. R., & Stahl, J. M. (2018). Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications. Nanoscale Research Letters, 13(1), 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release, 190, 381–397.

    Article  CAS  PubMed  Google Scholar 

  • Zeleny, J. (1914). The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 3(2), 69.

    Article  Google Scholar 

  • Zeng, J., Aigner, A., Czubayko, F., Kissel, T., Wendorff, J. H., & Greiner, A. (2005). Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules, 6(3), 1484–1488.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., & Ma, P. (2001). Processing of polymer scaffolds: Phase separation. In Methods of tissue engineering (pp. 715–724). New York: Academic Press.

    Google Scholar 

  • Zhang, R., & Ma, P. X. (2000). Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. Journal of Biomedical Materials Research, 52(2), 430–438.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Zhou, L., Li, Q., Zou, Q., & Du, C. (2018). Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. Carbohydrate Polymers, 195, 225–234.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Z., Yin, W., Zara, J. N., Li, W., Kwak, J., Mamidi, R., et al. (2010). The use of BMP-2 coupled – Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials, 31(35), 9293–9300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, H., & Lee, J. (2011). Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 7(7), 2769–2781.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Chen, X., Wang, J., & Chen, W. (2016). Hydroxyapatite/β-tricalcium phosphate composite for guiding bone tissue growth into a titanium tube in 8 mm dog tibia cavity defects. Journal of Wuhan University of Technology-Material Science Edition, 31(2), 468–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors acknowledge financial support from SERB [EEQ/2017/000836], DST, Govt. of India; Nanomission [SR/NM/NB-1079/2017 (G)], DST, Govt. of India; CSIR JRF for the present work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Modi, U., Kedaria, D., Dhimmar, B., Vasita, R. (2021). Translational Studies of Nanofibers-Based Scaffold for Skin and Bone Tissue Regeneration. In: Singh, S. (eds) Emerging Trends in Nanomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-9920-0_5

Download citation

Publish with us

Policies and ethics