Skip to main content

Advertisement

Log in

A novel lignin-based nanofibrous dressing containing arginine for wound-healing applications

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Nanofiber-based wound dressings have attracted much attention in wound care owing to their unique properties such as high aspect ratio and three-dimensional structure. Arginine is a precursor of nitric oxide that plays an important role in the wound-healing process. Therefore, in this study, we have developed a gel which contains lignin nanofibers (Lig-NFs) that were surface modified by arginine molecules via electrostatic interaction (Arg-Lig-NF gel). The effect of pH on the amount of arginine attached on Lig-NF surface was evaluated at three different pH values—5, 6, and 7. Fourier transform infrared spectroscopy and zeta potential of Lig-NFs before and after surface modification confirmed the surface modification of Lig-NFs with arginine molecules. The optimum gel composed of uniform Arg-Lig-NFs with diameter ranging from 100 to 250 nm. There was 184.60 ± 4.85 mg arginine in each gram of optimum gel. The release of arginine from Arg-Lig-NF gel showed a sustained release manner, and about 86.28 ± 3.50% of attached arginine were released after 24 h. Moreover, the optimum gel presented suitable viscosity and spreadability for topical application. The in vivo full thickness wound-healing assay carried out in rats demonstrated that the optimum Arg-Lig-NF gel can accelerate wound closure and increase re-epithelialization, collagen deposition, and angiogenesis significantly in Arg-Lig-NF gel-treated wounds compared to Lig-NF gel and arginine solution. Overall, these findings demonstrate that Arg-Lig-NF gel can be a promising material for the future development of effective hydrocolloid wound dressings used in the treatment of acute and chronic wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair and Regeneration. 1994;2:165–70.

    Article  CAS  PubMed  Google Scholar 

  2. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences. 2008;97:2892–923.

    Article  CAS  PubMed  Google Scholar 

  3. Ovington LG. Advances in wound dressings. Clinics in Dermatology. 2007;25:33–8.

    Article  PubMed  Google Scholar 

  4. Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials. 2008;29:587–96.

    Article  CAS  PubMed  Google Scholar 

  5. Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate Polymers. 2014;100:166–78.

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Wang M, Williams GR, Wu J, Sun X, Lv Y, et al. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Adv. 2016;6:50267–77.

  7. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies. 2010;21:77–95.

    CAS  Google Scholar 

  8. Meftahi A, Nasrolahi D, Babaeipour V, Alibakhshi S, Shahbazi S. Investigation of nano bacterial cellulose coated by sesamum oil for wound dressing application. Procedia. Materials Science. 2015;11:212–6.

    CAS  Google Scholar 

  9. Cai N, Li C, Han C, Luo X, Shen L, Xue Y, et al. Mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Applied Surface Science. 2016;369:492–500.

    Article  CAS  Google Scholar 

  10. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D. Lignins and lignocellulosics: a better control of synthesis for new improved uses. Trends in Plant Science. 2003;8:576–81.

    Article  CAS  PubMed  Google Scholar 

  11. Chen H. Chemical composition and structure of natural lignocellulose. In Biotechnology of lignocellulose. Netherlands: Springer; 2014. p. 25–71.

    Book  Google Scholar 

  12. Kai D, Ren W, Tian L, Chee PL, Liu Y, Ramakrishna S, et al. Engineering poly (lactide)-lignin nanofibers with antioxidant activity for biomedical application. ACS Sustainable Chemistry & Engineering. 2016;4:5268–76.

    Article  CAS  Google Scholar 

  13. Kai D, Jiang S, Low ZW, Loh XJ. Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. Journal of Materials Chemistry B. 2015;3:6194–204.

    Article  CAS  Google Scholar 

  14. Barapatre A, Aadil KR, Tiwary BN, Jha H. In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. International Journal of Biological Macromolecules. 2015;75:81–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yousefi H, Faezipour M, Nishino T, Shakeri A, Ebrahimi G. All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polymer Journal. 2011;43:559–64.

    Article  CAS  Google Scholar 

  16. Dong D, Fricke AL, Moudgil BM, Johnson H. Electrokinetic study of kraft lignin. Tappi Journal. 1996;7:191–7.

    Google Scholar 

  17. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T. Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2012;82:308–15.

    Article  CAS  PubMed  Google Scholar 

  18. Pachuau L. Recent developments in novel drug delivery systems for wound healing. Expert Opinion on Drug Delivery. 2015;12:1895–909.

    Article  CAS  PubMed  Google Scholar 

  19. Luo JD, Chen AF. Nitric oxide: a newly discovered function on wound healing. Acta Pharmacologica Sinica. 2005;26:259–64.

    Article  CAS  PubMed  Google Scholar 

  20. Seifter E, Rettura G, Barbul A, Levenson SM. Arginine: an essential amino acid for injured rats. Surgery. 1978;84:224–30.

    CAS  PubMed  Google Scholar 

  21. Kang Y, Kim J, Lee YM, Im S, Park H, Kim WJ. Nitric oxide-releasing polymer incorporated ointment for cutaneous wound healing. Journal of Controlled Release. 2015;220:624–30.

    Article  CAS  PubMed  Google Scholar 

  22. Blecher K, Martinez LR, Tuckman-Vernon C, Nacharaju P, Schairer D, Chouake J, et al. Nitric oxide-releasing nanoparticles accelerate wound healing in NOD-SCID mice. Nanomedicine: NBM. 2012;8:1364–71.

    Article  CAS  Google Scholar 

  23. Liu P, Oksman K, Mathew AP. Surface adsorption and self-assembly of Cu (II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. Journal of Colloid and Interface Science. 2016;464:175–82.

    Article  CAS  PubMed  Google Scholar 

  24. Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, et al. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. International Journal of Pharmaceutics. 2014;471:45–55.

    Article  CAS  PubMed  Google Scholar 

  25. Khan AW, Kotta S, Ansari SH, Sharma RK, Kumar A, Ali J. Formulation development, optimization and evaluation of aloe vera gel for wound healing. Pharmacognosy Magazine. 2013;9:S6–S10.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sinha UK, Gallagher LA. Effects of steel scalpel, ultrasonic scalpel, CO2 laser, and monopolar and bipolar electrosurgery on wound healing in guinea pig oral mucosa. Laryngoscope. 2003;113:228–36.

    Article  PubMed  Google Scholar 

  27. Li X, Fan R, Tong A, Yang M, Deng J, Zhou L, et al. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. International Journal of Pharmaceutics. 2015;495:560–71.

    Article  CAS  PubMed  Google Scholar 

  28. Fan L, Zhou X, Wu P, Xie W, Zheng H, Tan W, et al. Preparation of carboxymethyl cellulose sulfates and its application as anticoagulant and wound dressing. International Journal of Biological Macromolecules. 2014;66:245–53.

    Article  CAS  PubMed  Google Scholar 

  29. Gal P, Toporcer T, Vidinský B, Mokrý M, Novotný M, Kilik M, et al. Early changes in the tensile strength and morphology of primary sutured skin wounds in rats. Folia Biologica. 2006;52:109–15.

    CAS  PubMed  Google Scholar 

  30. Garcia-Orue I, Gainza G, Girbau C, Alonso R, Aguirre JJ, Pedraz JL, et al. LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds. European Journal of Pharmaceutics and Biopharmaceutics. 2016;108:310–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ahuja S. Handbook of bioseparations. New York: Academic Press; 2000. pp. 335.

  32. Šurina I, Jablonský M, Ház A, Sladková A, Briškárová A, Kačík F, et al. Characterization of non-wood lignin precipitated with sulphuric acid of various concentrations. BioResources. 2015;10:1408–23.

    Google Scholar 

  33. Matsumoto Y, Kuroyanagi Y. Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. Journal of Biomaterials Science. Polymer Edition. 2010;21:715–26.

    Article  CAS  PubMed  Google Scholar 

  34. Lin TY, Chen DH. One-step green synthesis of arginine-capped iron oxide/reduced graphene oxide nanocomposite and its use for acid dye removal. RSC Advances. 2014;4:29,357–64.

    Article  CAS  Google Scholar 

  35. Kubo S, Kadla JF. Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules. 2005;6:2815–21.

    Article  CAS  PubMed  Google Scholar 

  36. Fried SD, Bagchi S, Boxer SG. Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes. Journal of the American Chemical Society. 2013;135:11,181–92.

    Article  CAS  Google Scholar 

  37. Ribeiro AJ, Silva C, Ferreira D, Veiga F. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Sciences. 2005;25:31–40.

    Article  CAS  PubMed  Google Scholar 

  38. Yew HC, Misran M. Preparation and characterization of pH dependent κ-carrageenan-chitosan nanoparticle as potential slow release delivery carrier. Iranian Polymer Journal. 2016;25:1037–46.

    Article  CAS  Google Scholar 

  39. Friedman AJ, Han G, Navati MS, Chacko M, Gunther L, Alfieri A, et al. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide. 2008;19:12–20.

    Article  CAS  PubMed  Google Scholar 

  40. Parirokh M, Sadeghi AS, Nakhaee N, Pardakhty A, Abbott PV, Yosefi MH. Effect of topical anesthesia on pain during infiltration injection and success of anesthesia for maxillary central incisors. Journal of Endodontia. 2012;38:1553–6.

    Article  Google Scholar 

  41. Field CK, Kerstein MD. Overview of wound healing in a moist environment. American Journal of Surgery. 1994;167:S2–6.

    Article  Google Scholar 

  42. Ajalloueian F, Tavanai H, Hilborn J, Donzel-Gargand O, Leifer K, Wickham A, Arpanaei A. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res Int 2014;2014. https://doi.org/10.1155/2014/475280.

  43. Druecke D, Lamme EN, Hermann S, Pieper J, May PS, Steinau HU, et al. Modulation of scar tissue formation using different dermal regeneration templates in the treatment of experimental full-thickness wounds. Wound Repair and Regeneration. 2004;12:518–27.

    Article  PubMed  Google Scholar 

  44. Dubský M, Kubinová Š, Širc J, Voska L, Zajíček R, Zajícová A, et al. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. Journal of Materials Science. Materials in Medicine. 2012;23:931–41.

    Article  PubMed  Google Scholar 

  45. Yu H, Peng J, Xu Y, Chang J, Li H. Bioglass activated skin tissue engineering constructs for wound healing. ACS Applied Materials & Interfaces. 2016;8:703–15.

    Article  CAS  Google Scholar 

  46. Broughton G, Janis JE, Attinger CE. The basic science of wound healing. Plastic and Reconstructive Surgery. 2006;117:12S–34S.

    Article  CAS  PubMed  Google Scholar 

  47. Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing—a review. Journal of Materials Chemistry B. 2013;1:4531–41.

    Article  CAS  Google Scholar 

  48. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. The Journal of Investigative Dermatology. Symposium Proceedings. 2000;5:40–6.

    Article  CAS  PubMed  Google Scholar 

  49. Balaji S, LeSaint M, Bhattacharya SS, Moles C, Dhamija Y, Kidd M, et al. Adenoviral-mediated gene transfer of insulin-like growth factor 1 enhances wound healing and induces angiogenesis. The Journal of Surgical Research. 2014;190:367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mammadov R, Mammadov B, Toksoz S, Aydin B, Yagci R, Tekinay AB, et al. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules. 2011;12:3508–19.

    Article  CAS  PubMed  Google Scholar 

  51. Senturk B, Mercan S, Delibasi T, Guler MO, Tekinay AB. Angiogenic peptide nanofibers improve wound healing in STZ-induced diabetic rats. ACS Biomaterials Science & Engineering. 2016;2:1180–9.

    Article  CAS  Google Scholar 

  52. Thakur VK, Thakur MK. Recent advances in green hydrogels from lignin: a review. International Journal of Biological Macromolecules. 2015;72:834–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Parvin Mahzouni (Professor of Pathology, Isfahan University of Medical Sciences) for the pathological and histological evaluations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azade Taheri.

Ethics declarations

The animal experiments were performed with the approval of the ethics committee of the Pharmaceutical Research Centre, School of Pharmacy, Isfahan University of Medical Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reesi, F., Minaiyan, M. & Taheri, A. A novel lignin-based nanofibrous dressing containing arginine for wound-healing applications. Drug Deliv. and Transl. Res. 8, 111–122 (2018). https://doi.org/10.1007/s13346-017-0441-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0441-0

Keywords

Navigation