Skip to main content

Nanoparticles Catalyzing Enzymatic Reactions: Recent Developments and Future Prospects

  • Chapter
  • First Online:
Emerging Trends in Nanomedicine

Abstract

Nanozymes are the nanoparticles which acts like natural enzymes and catalyze various biological reactions. Natural enzymes are facing a lot of issues in their applications such as expensive synthesis, lower stability, poor recyclability, sensitivity to pH and temperature, loss of activity on exposure to heavy metals etc. Nanozymes exhibit better catalytic activity than the corresponding natural enzymes even at the wide range of conditions of temperature and pH, hence they are better alternatives of natural enzymes. Nanozymes also offer high specificity to their substrate, easy synthesis, purification, and storage. Owing to these advantages, nanozymes have attracted tremendous attention of researchers to develop several applications of artificial enzymes in biomedical sciences. In this chapter, we have discussed different types of nanoparticles offering activities of biological enzymes. Based on the enzyme mimetic-activities, nanozymes are classified into three major groups, carbon-based nanozymes, metal-based nanozymes and metal oxide-based nanozymes. These nanozymes are further discussed based on the type of enzyme mimetic activities they display, such as Superoxide Dismutase, Catalase, Nuclease, Oxidase, Peroxidase, Phosphotriesterase, Phosphatase. These nanozymes are reported to be used as stable, highly efficient, robust and biocompatible catalyst, which can be used for the treatment of various enzyme-based disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcalde, M., Ferrer, M., Plou, F. J., & Ballesteros, A. (2006). Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends in Biotechnology, 24(6), 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Ali, S. S., Hardt, J. I., Quick, K. L., Kim-Han, J. S., Erlanger, B. F., Huang, T. T., et al. (2004). A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radical Biology and Medicine, 37(8), 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  • André, R., Natálio, F., Humanes, M., Leppin, J., Heinze, K., Wever, R., et al. (2011). V2O5 nanowires with an intrinsic peroxidase-like activity. Advanced Functional Materials, 21(3), 501–509.

    Article  CAS  Google Scholar 

  • Asati, A., Santra, S., Kaittanis, C., Nath, S., & Perez, J. M. (2009). Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angewandte Chemie International Edition., 48(13), 2308–2312.

    Article  CAS  PubMed  Google Scholar 

  • Asati, A., Kaittanis, C., Santra, S., & Perez, J. M. (2011). pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Analytical Chemistry, 83(7), 2547–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian, K., & Burghard, M. (2005). Chemically functionalized carbon nanotubes. Small, 1(2), 180–192.

    Article  CAS  PubMed  Google Scholar 

  • Barik, A., Mishra, B., Kunwar, A., Kadam, R. M., Shen, L., Dutta, S., et al. (2007). Comparative study of copper (II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers. European Journal of Medicinal Chemistry, 42(4), 431–439.

    Article  CAS  PubMed  Google Scholar 

  • Batinić-Haberle, I., Rebouças, J. S., & Spasojević, I. (2010). Superoxide dismutase mimics: Chemistry, pharmacology, and therapeutic potential. Antioxidants and Redox Signaling, 13(6), 877–918.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blasko, J. C., Grimm, P. D., Sylvester, J. E., Badiozamani, K. R., Hoak, D., & Cavanagh, W. (2000). Palladium-103 brachytherapy for prostate carcinoma. International Journal of Radiation Oncology, Biology, Physics, 46(4), 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Borghei, Y. S., Hosseini, M., & Ganjali, M. R. (2018). Oxidase-like catalytic activity of Cys-AuNCs upon visible light irradiation and its application for visual miRNA detection. Sensors and Actuators B: Chemical, 273, 1618–1626.

    Article  CAS  Google Scholar 

  • Boutorine, A. S., Takasugi, M., Hélène, C., Tokuyama, H., Isobe, H., & Nakamura, E. (1995). Fullerene–oligonucleotide conjugates: Photoinduced sequence-specific DNA cleavage. Angewandte Chemie International Edition in English, 33(23–24), 2462–2465.

    Article  Google Scholar 

  • Breslow, R. (1982). Artificial enzymes. Science, 218(4572), 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Breslow, R. (2005). Artificial enzymes (pp. 1–35). Weinheim, Germany: Wiley.

    Book  Google Scholar 

  • Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681.

    Article  PubMed Central  CAS  Google Scholar 

  • Cabuzu, D., Cirja, A., Puiu, R., & Mihai Grumezescu, A. (2015). Biomedical applications of gold nanoparticles. Current Topics in Medicinal Chemistry, 15(16), 1605–1613.

    Article  CAS  PubMed  Google Scholar 

  • Cao, G. X., Wu, X. M., Dong, Y. M., Li, Z. J., & Wang, G. L. (2016). Colorimetric determination of melamine based on the reversal of the mercury (II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Microchimica Acta, 183(1), 441–448.

    Article  CAS  Google Scholar 

  • Chai, F., Wang, C., Wang, T., Li, L., & Su, Z. (2010). Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Applied Materials & Interfaces, 2(5), 1466–1470.

    Article  CAS  Google Scholar 

  • Chen, J., Patil, S., Seal, S., & McGinnis, J. F. (2006). Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nature Nanotechnology, 1(2), 142.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T., Li, Y. Y., Zhang, J. L., Xu, B., Lin, Y., Wang, C. X., et al. (2011). Protective effect of C60-methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. Journal of Applied Toxicology, 31(3), 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Yin, J. J., Zhou, Y. T., Zhang, Y., Song, L., Song, M., et al. (2012a). Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 6(5), 4001–4012.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Chen, J., Feng, Y. B., Hong, L., Chen, Q. Y., Wu, L. F., et al. (2012b). Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. The Analyst, 137(7), 1706–1712.

    Article  CAS  PubMed  Google Scholar 

  • Chistyakov, V. A., Smirnova, Y. O., Prazdnova, E. V., & Soldatov, A. V. (2013). Possible mechanisms of fullerene C60 antioxidant action. BioMed Research International, 2013, 821498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choleva, T. G., Gatselou, V. A., Tsogas, G. Z., & Giokas, D. L. (2018). Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchimica Acta, 185(1), 22.

    Article  CAS  Google Scholar 

  • Comotti, M., Della Pina, C., Matarrese, R., & Rossi, M. (2004). The catalytic activity of “naked” gold particles. Angewandte Chemie International Edition, 43(43), 5812–5815.

    Article  CAS  PubMed  Google Scholar 

  • Comotti, M., Della Pina, C., Falletta, E., & Rossi, M. (2006). Aerobic oxidation of glucose with gold catalyst: Hydrogen peroxide as intermediate and reagent. Advanced Synthesis and Catalysis, 348(3), 313–316.

    Article  CAS  Google Scholar 

  • Cooper, D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., et al. (2012). Experimental review of graphene. ISRN Condens Matter Phys, 2012, 501686.

    Article  Google Scholar 

  • Cui, R., Han, Z., & Zhu, J. J. (2011). Helical carbon nanotubes: Intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chemistry–A European Journal, 17(34), 9377–9384.

    Article  CAS  Google Scholar 

  • Das, M., Patil, S., Bhargava, N., Kang, J. F., Riedel, L. M., Seal, S., et al. (2007). Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials, 28(10), 1918–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Penido, C. A., Pacheco, M. T., Lednev, I. K., & Silveira Jr., L. (2016). Raman spectroscopy in forensic analysis: Identification of cocaine and other illegal drugs of abuse. Journal of Raman Spectroscopy, 47(1), 28–38.

    Article  CAS  Google Scholar 

  • Deng, H. H., Lin, X. L., et al. (2017). Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale, 9(29), 10292–10300.

    Article  CAS  PubMed  Google Scholar 

  • Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: Current status and future prospects. The Journal of the Association of Physicians of India, 52(794804), 4.

    Google Scholar 

  • Dhall, A., & Self, W. (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants, 7(8), 97.

    Article  PubMed Central  CAS  Google Scholar 

  • Dugan, L. L., Gabrielsen, J. K., Shan, P. Y., Lin, T. S., & Choi, D. W. (1996). Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiology of Disease, 3(2), 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Dugan, L. L., Turetsky, D. M., Du, C., Lobner, D., Wheeler, M., Almli, C. R., et al. (1997). Carboxyfullerenes as neuroprotective agents. Proceedings of the National Academy of Sciences, 94(17), 9434–9439.

    Article  CAS  Google Scholar 

  • Fan, J., Yin, J. J., Ning, B., Wu, X., Hu, Y., Ferrari, M., et al. (2011). Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials, 32(6), 1611–1618.

    Article  CAS  PubMed  Google Scholar 

  • Finger, P. T., Chin, K. J., & Duvall, G. (2009). Palladium-103 for Choroidal melanoma study group. Palladium-103 ophthalmic plaque radiation therapy for choroidal melanoma: 400 treated patients. Ophthalmology, 116(4), 790–796.

    Article  PubMed  Google Scholar 

  • Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., et al. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9), 577–583.

    Article  CAS  PubMed  Google Scholar 

  • Goel, S., Chen, F., & Cai, W. (2014). Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small, 10(4), 631–645.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Deng, L., Li, J., Guo, S., Wang, E., & Dong, S. (2011). Hemin− graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano, 5(2), 1282–1290.

    Article  CAS  PubMed  Google Scholar 

  • He, W., Liu, Y., Yuan, J., Yin, J. J., Wu, X., Hu, X., et al. (2011). Au@ Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials, 32(4), 1139–1147.

    Article  CAS  PubMed  Google Scholar 

  • He, W., Zhou, Y. T., Wamer, W. G., Hu, X., Wu, X., Zheng, Z., et al. (2013). Intrinsic catalytic activity of au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials, 34(3), 765–773.

    Article  CAS  PubMed  Google Scholar 

  • Heckert, E. G., Seal, S., & Self, W. T. (2008). Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environmental Science & Technology, 42(13), 5014–5019.

    Article  CAS  Google Scholar 

  • Herreros-López, A., Carini, M., Da Ros, T., Carofiglio, T., Marega, C., La Parola, V., et al. (2017). Nanocrystalline cellulose-fullerene: Novel conjugates. Carbohydrate Polymers, 164, 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Hong, H., Shi, J., Yang, Y., Zhang, Y., Engle, J. W., Nickles, R. J., et al. (2011). Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Letters, 11(9), 3744–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Z., Zhang, C., Tang, P., Li, C., Yao, Y., Sun, S., et al. (2012). Protection of cells from nitric oxide-mediated apoptotic death by glutathione C60 derivative. Cell Biology International, 36(7), 677–681.

    Article  CAS  PubMed  Google Scholar 

  • Hu, A. L., Deng, H. H., Zheng, X. Q., Wu, Y. Y., Lin, X. L., Liu, A. L., et al. (2017). Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics. Biosensors and Bioelectronics, 97, 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Hu, L., Liao, H., Feng, L., Wang, M., & Fu, W. (2018). Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Analytical Chemistry, 90(10), 6247–6252.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T. W., et al. (2002). Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Letters, 2(4), 311–314.

    Article  CAS  Google Scholar 

  • Hwang, J. Y., Shin, U. S., Jang, W. C., Hyun, J. K., Wall, I. B., & Kim, H. W. (2013). Biofunctionalized carbon nanotubes in neural regeneration: A mini-review. Nanoscale, 5(2), 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Jang, N. H. (2002). The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bulletin of the Korean Chemical Society., 23(12), 1790–1800.

    Article  CAS  Google Scholar 

  • Jiang, H., Chen, Z., Cao, H., & Huang, Y. (2012). Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst, 137(23), 5560–5564.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, C., Zhu, J., Li, Z., Luo, J., Wang, J., & Sun, Y. (2017). Chitosan–gold nanoparticles as peroxidase mimic and their application in glucose detection in serum. RSC Advances, 7(70), 44463–44469.

    Article  CAS  Google Scholar 

  • Jiao, X., Song, H., Zhao, H., Bai, W., Zhang, L., & Lv, Y. (2012). Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Analytical Methods, 4(10), 3261–3267.

    Article  CAS  Google Scholar 

  • Jiao, X., Liu, W., Wu, D., Liu, W., & Song, H. (2018). Enhanced peroxidase-like activity of Mo-doped ceria nanoparticles for sensitive colorimetric detection of glucose. Analytical Methods, 10(1), 76–83.

    Article  CAS  Google Scholar 

  • Jones, S. A., Bowler, P. G., Walker, M., & Parsons, D. (2004). Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair and Regeneration, 12(3), 288–294.

    Article  PubMed  Google Scholar 

  • Jv, Y., Li, B., & Cao, R. (2010). Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chemical Communications, 46(42), 8017–8019.

    Article  PubMed  CAS  Google Scholar 

  • Kajita, M., Hikosaka, K., Iitsuka, M., Kanayama, A., Toshima, N., & Miyamoto, Y. (2007). Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radical Research, 41(6), 615–626.

    Article  CAS  PubMed  Google Scholar 

  • Karimi, B., Abedi, S., Clark, J. H., & Budarin, V. (2006). Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: The role of Mesoporous channels of SBA-15 in stabilizing palladium nanoparticles. Angewandte Chemie International Edition, 45(29), 4776–4779.

    Article  CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109(4), 1083–1087.

    Article  CAS  PubMed  Google Scholar 

  • Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, 10, 1056–1058.

    Article  CAS  Google Scholar 

  • Kroto, H., Health, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162.

    Article  CAS  Google Scholar 

  • Krusic, P. J., Wasserman, E., Keizer, P. N., Morton, J. R., & Preston, K. F. (1991). Radical reactions of C60. Science, 254(5035), 1183–1185.

    Article  CAS  PubMed  Google Scholar 

  • Kuchma, M. H., Komanski, C. B., Colon, J., Teblum, A., Masunov, A. E., Alvarado, B., et al. (2010). Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6(6), 738–744.

    Article  CAS  Google Scholar 

  • Li, Y., & Breaker, R. R. (1999). Deoxyribozymes: New players in the ancient game of biocatalysis. Current Opinion in Structural Biology, 9(3), 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., & Chou, T. W. (2003). Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Composites Science and Technology, 63(11), 1517–1524.

    Article  CAS  Google Scholar 

  • Li, R., Zhen, M., Guan, M., Chen, D., Zhang, G., Ge, J., et al. (2013). A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes. Biosensors and Bioelectronics, 47, 502–507.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., He, X., Yin, J. J., Ma, Y., Zhang, P., Li, J., et al. (2015). Acquired superoxide-scavenging ability of ceria nanoparticles. Angewandte Chemie International Edition, 54(6), 1832–1835.

    Article  CAS  PubMed  Google Scholar 

  • Li, R. S., Liu, H., Chen, B. B., Zhang, H. Z., Huang, C. Z., et al. (2016a). Stable gold nanoparticles as a novel peroxidase mimic for colorimetric detection of cysteine. Analytical Methods, 8(11), 2494–2501.

    Article  CAS  Google Scholar 

  • Li, S., Li, H., Chen, F., Liu, J., Zhang, H., Yang, Z., et al. (2016b). Strong coupled palladium nanoparticles decorated on magnetic graphene nanosheets as enhanced peroxidase mimetics for colorimetric detection of H2O2. Dyes and Pigments, 125, 64–71.

    Article  CAS  Google Scholar 

  • Lin, Y., Ren, J., & Qu, X. (2014). Catalytically active nanomaterials: A promising candidate for artificial enzymes. Accounts of Chemical Research, 47(4), 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., & Liu, J. (2017). Surface modification of nanozymes. Nano Research, 10(4), 1125–1148.

    Article  CAS  Google Scholar 

  • Liu, M., Zhao, H., Chen, S., Yu, H., & Quan, X. (2012a). Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano, 6(4), 3142–3151.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Hu, X., Hou, S., Wen, T., Liu, W., Zhu, X., et al. (2012b). Au@ Pt core/shell nanorods with peroxidase-and ascorbate oxidase-like activities for improved detection of glucose. Sensors and Actuators B: Chemical, 166, 708–714.

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, J., Chen, X., Du, X. S., Zhang, J. L., Liu, G., et al. (2016). Application of iron oxide nanoparticles in glioma imaging and therapy: From bench to bedside. Nanoscale, 8(15), 7808–7826.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Gao, Y., Chandrawati, R., & Hosta-Rigau, L. (2019). Therapeutic applications of multifunctional nanozymes. Nanoscale, 11(44), 21046–21060.

    Article  CAS  PubMed  Google Scholar 

  • Loeb, S. J., Shimizu, G. K., & Wisner, J. A. (1998). Mono-versus dipalladation of the durene-based Tetrathioether ligand 1, 2, 4, 5-(t BuSCH2)4C6H2. Structures of [PdCl ((t BuSCH2)4C6H)] and [Pd2 ((t BuSCH2)4C6) (MeCN)2] [BF4]2. Organometallics, 17(11), 2324–2327.

    Article  CAS  Google Scholar 

  • Long, L., Liu, J., Lu, K., Zhang, T., Xie, Y., Ji, Y., et al. (2018). Highly sensitive and robust peroxidase-like activity of au–Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. Journal of Nanobiotechnology, 16(1), 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longo, M. A., & Combes, D. (1998). Analysis of the thermal deactivation kinetics of α-chymotrypsin modified by chemoenzymatic glycosylation. In Progress in biotechnology (pp. 135–140). Amsterdam: Elsevier.

    Google Scholar 

  • Lordi, V., Yao, N., & Wei, J. (2001). Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chemistry of Materials, 13(3), 733–737.

    Article  CAS  Google Scholar 

  • Lou, Z., Zhao, S., Wang, Q., & Wei, H. (2019). N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Analytical Chemistry, 91(23), 15267–15274.

    Article  CAS  PubMed  Google Scholar 

  • Luca, A., Stefano, A., Paganini, M. C., Mattia, C., & Gaetano, G. (2014). TiO2@ CeOx core−shell nanoparticles as artificial enzymes with peroxidase-like activity. ACS Applied Materials & Interfaces, 6(22), 20130–20136.

    Article  CAS  Google Scholar 

  • Lucente-Schultz, R. M., Moore, V. C., Leonard, A. D., Price, B. K., Kosynkin, D. V., Lu, M., et al. (2009). Antioxidant single-walled carbon nanotubes. Journal of the American Chemical Society, 131(11), 3934–3941.

    Article  CAS  PubMed  Google Scholar 

  • Luo, W., Zhu, C., Su, S., Li, D., He, Y., Huang, Q., et al. (2010). Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano, 4(12), 7451–7458.

    Google Scholar 

  • Ma, Y., Zhang, Z., Ren, C., Liu, G., & Chen, X. (2012). A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst, 137(2), 485–489.

    Google Scholar 

  • Ma, Y., Gao, W., Zhang, Z., Zhang, S., Tian, Z., Liu, Y., et al. (2018). Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surface Science Reports, 73(1), 1–36.

    Article  CAS  Google Scholar 

  • Magro, M., Baratella, D., Bonaiuto, E., De Jessica, A. R., & Vianello, F. (2018). New perspectives on biomedical applications of iron oxide nanoparticles. Current Medicinal Chemistry, 25(4), 540–555.

    Article  CAS  PubMed  Google Scholar 

  • Maiti, D., Tong, X., Mou, X., & Yang, K. (2019). Carbon-based nanomaterials for biomedical applications: A recent study. Frontiers in Pharmacology, 9, 1401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manea, F., Houillon, F. B., Pasquato, L., & Scrimin, P. (2004). Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angewandte Chemie International Edition, 43(45), 6165–6169.

    Article  CAS  PubMed  Google Scholar 

  • McKeating, K. S., Sloan-Dennison, S., Graham, D., & Faulds, K. (2013). An investigation into the simultaneous enzymatic and SERRS properties of silver nanoparticles. Analyst, 138(21), 6347–6353.

    Article  CAS  PubMed  Google Scholar 

  • Moglianetti, M., Pedone, D., Udayan, G., Retta, S. F., Debellis, D., Marotta, R., et al. (2020). Intracellular antioxidant activity of biocompatible citrate-capped palladium Nanozymes. Nanomaterials, 10(1), 99.

    Article  CAS  PubMed Central  Google Scholar 

  • Motherwell, W., Bingham, M., & Six, Y. (2001). Recent progress in the design and synthesis of artificial enzymes. Tetrahedron, 22(57), 4663–4686.

    Article  Google Scholar 

  • Nishino, T., & Morikawa, K. (2002). Structure and function of nucleases in DNA repair: Shape, grip and blade of the DNA scissors. Oncogene, 21(58), 9022.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J., Feldman, M. D., Kim, J., Condit, C., Emelianov, S., & Milner, T. E. (2006). Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology, 17(16), 4183.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, K., Mashino, T., & Hirobe, M. (1996). Superoxide radical quenching and cytochrome C peroxidase-like activity of C60-dimalonic acid, C62(COOH)4. Bioorganic & Medicinal Chemistry Letters, 6(5), 539–542.

    Article  CAS  Google Scholar 

  • Özkurt, Z., & Kazazoğlu, E. (2011). Zirconia dental implants: A literature review. The Journal of Oral Implantology, 37(3), 367–376.

    Article  PubMed  Google Scholar 

  • Pasquato, L., Pengo, P., & Scrimin, P. (2005). Nanozymes: Functional nanoparticle-based catalysts. Supramolecular Chemistry, 17(1–2), 163–171.

    Article  CAS  Google Scholar 

  • Patel, V., Singh, M., Mayes, E. L., Martinez, A., Shutthanandan, V., Bansal, V., et al. (2018). Ligand-mediated reversal of the oxidation state dependent ROS scavenging and enzyme mimicking activity of ceria nanoparticles. Chemical Communications, 54(99), 13973–13976.

    Article  CAS  PubMed  Google Scholar 

  • Patel, K. D., Singh, R. K., & Kim, H. W. (2019). Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 6(3), 434–469.

    Article  CAS  Google Scholar 

  • Pirmohamed, T., Dowding, J. M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A. S., et al. (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications, 46(16), 2736–2738.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, A. P., Cruz, M. A., Tovani, C. B., & Ciancaglini, P. (2017). Biomedical applications of nanotechnology. Biophysical Reviews, 9(2), 79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., & Rahuman, A. A. (2012). Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters, 71, 114–116.

    Article  CAS  Google Scholar 

  • Rastogi, L., Karunasagar, D., Sashidhar, R. B., & Giri, A. (2017). Peroxidase-like activity of gum kondagogu reduced/stabilized palladium nanoparticles and its analytical application for colorimetric detection of glucose in biological samples. Sensors and Actuators B: Chemical, 240, 1182–1188.

    Article  CAS  Google Scholar 

  • Rout, G. K., Shin, H. S., Gouda, S., Sahoo, S., Das, G., Fraceto, L. F., et al. (2018). Current advances in nanocarriers for biomedical research and their applications. Artificial Cells Nanomed Biotechnol, 46(sup2), 1053–1062.

    Article  CAS  Google Scholar 

  • Savadogo, O., Lee, K., Oishi, K., Mitsushima, S., Kamiya, N., & Ota, K. I. (2004). New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochemistry Communications, 6(2), 105–109.

    Article  CAS  Google Scholar 

  • Shah, J., Purohit, R., Singh, R., Karakoti, A. S., & Singh, S. (2015). ATP-enhanced peroxidase-like activity of gold nanoparticles. Journal of Colloid and Interface Science, 456, 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya, S., Ozawa, Y., Watanabe, K., Izuo, N., Toda, T., Yokote, K., et al. (2014). Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One, 9(10), e109288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (1996). Bacterial heavy metal resistance: New surprises. Annual Review of Microbiology, 50(1), 753–789.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S. (2019). Nanomaterials exhibiting enzyme-like properties (Nanozymes): Current advances and future perspectives. Frontiers in Chemistry, 7, 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R., & Singh, S. (2015). Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 132, 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., & Singh, S. (2019). Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids and Surfaces B: Biointerfaces, 175, 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Dosani, T., Karakoti, A. S., Kumar, A., Seal, S., & Self, W. T. (2011). A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 32(28), 6745–6753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, V., Singh, S., Das, S., Kumar, A., Self, W. T., & Seal, S. (2012). A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: Release kinetics and biological activity. Nanoscale, 4(8), 2597–2605.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Wang, X., Zhao, C., Qu, K., Ren, J., & Qu, X. (2010a). Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chemistry–A European Journal, 16(12), 3617–3621.

    Article  CAS  Google Scholar 

  • Song, Y., Qu, K., Xu, C., Ren, J., & Qu, X. (2010b). Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chemical Communications, 46(35), 6572–6574.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Qu, K., Zhao, C., Ren, J., & Qu, X. (2010c). Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Advanced Materials, 22(19), 2206–2210.

    Article  CAS  PubMed  Google Scholar 

  • Song, W., Zhao, B., Wang, C., Ozaki, Y., & Lu, X. (2019). Functional nanomaterials with unique enzyme-like characteristics for sensing applications. Journal of Materials Chemistry B, 7(6), 850–875.

    Article  CAS  PubMed  Google Scholar 

  • Su, H., Liu, D. D., Zhao, M., Hu, W. L., Xue, S. S., Cao, Q., et al. (2015). Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Applied Materials & Interfaces, 7(15), 8233–8242.

    Article  CAS  Google Scholar 

  • Sun, Y. P., Fu, K., Lin, Y., & Huang, W. (2002). Functionalized carbon nanotubes: Properties and applications. Accounts of Chemical Research, 35(12), 1096–1104.

    Article  CAS  PubMed  Google Scholar 

  • Sun, H., Gao, N., Dong, K., Ren, J., & Qu, X. (2014). Graphene quantum dots-band-aids used for wound disinfection. ACS Nano, 8(6), 6202–6210.

    Article  CAS  PubMed  Google Scholar 

  • Tan, A. W., Pingguan-Murphy, B., Ahmad, R., & Akbar, S. A. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421–4435.

    Article  CAS  Google Scholar 

  • Tans, S., Devoret, M., Dai, H., Athess, R. E. S., Geerligs, L. J., & Dekker, C. (1997). Individual single-wall carbon nanotubes as quantum wires. Nature, 386(6624), 474–477.

    Article  CAS  Google Scholar 

  • Tarnuzzer, R. W., Colon, J., Patil, S., & Seal, S. (2005). Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Letters, 5(12), 2573–2577.

    Article  CAS  PubMed  Google Scholar 

  • Tokuyama, H., Yamago, S., Nakamura, E., Shiraki, T., & Sugiura, Y. (1993). Photoinduced biochemical activity of fullerene carboxylic acid. Journal of the American Chemical Society, 115(17), 7918–7919.

    Article  CAS  Google Scholar 

  • Tyagi, N., Srivastava, S. K., Arora, S., Omar, Y., Ijaz, Z. M., Ahmed, A. G., et al. (2016). Comparative analysis of the relative potential of silver, zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis. Cancer Letters, 383(1), 53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallabani, N. S., Karakoti, A. S., & Singh, S. (2017). ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids and Surfaces B: Biointerfaces, 153, 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Vernekar, A. A., Das, T., & Mugesh, G. (2016). Vacancy-engineered nanoceria: Enzyme mimetic hotspots for the degradation of nerve agents. Angewandte Chemie International Edition, 55(4), 1412–1416.

    Article  CAS  PubMed  Google Scholar 

  • Vinothkumar, G., Lalitha, A. I., & Suresh, B. K. (2018). Cerium phosphate–cerium oxide heterogeneous composite Nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorganic Chemistry, 58(1), 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. L., Xu, X., Wu, X., Cao, G., Dong, Y., & Li, Z. (2014a). Visible-light-stimulated enzymelike activity of graphene oxide and its application for facile glucose sensing. The Journal of Physical Chemistry C, 118(48), 28109–28117.

    Article  CAS  Google Scholar 

  • Wang, G. L., Xu, X. F., Cao, L. H., He, C. H., Li, Z. J., & Zhang, C. (2014b). Mercury (II)-stimulated oxidase mimetic activity of silver nanoparticles as a sensitive and selective mercury (II) sensor. RSC Advances, 4(12), 5867–5872.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhang, L., Shang, C., Zhang, Z., & Dong, S. (2016). Triple-enzyme mimetic activity of nickel–palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chemical Communications, 52(31), 5410–5413.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Li, H., Guo, L., Jiang, Q., & Liu, F. (2019). A cobalt-doped iron oxide nanozyme as a highly active peroxidase for renal tumor catalytic therapy. RSC Advances, 9(33), 18815–18822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093.

    Article  CAS  PubMed  Google Scholar 

  • Wennemers, H. (2011). Asymmetric catalysis with peptides. Chemical Communications, 47(44), 12036–12041.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, B. (2012). Palladium in temporary and permanently implantable medical devices. Platinum Metals Review, 56(3), 213–217.

    Article  CAS  Google Scholar 

  • Wu, M. S., He, L. J., Xu, J. J., & Chen, H. Y. (2014). RuSi@ Ru (bpy) 32+/au@ Ag2S nanoparticles electrochemiluminescence resonance energy transfer system for sensitive DNA detection. Analytical Chemistry, 86(9), 4559–4565.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Wang, X., Wang, Q., Lou, Z., Li, S., Zhu, Y., et al. (2017). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chemical Society Reviews, 48(4), 1004–1076.

    Article  Google Scholar 

  • Wu, Y., Chen, Y., Li, Y., Huang, J., Yu, H., & Wang, Z. (2018). Accelerating peroxidase-like activity of gold nanozymes using purine derivatives and its application for monitoring of occult blood in urine. Sensors and Actuators B: Chemical, 270, 443–451.

    Article  CAS  Google Scholar 

  • Xi, J., Wei, G., An, L., Xu, Z., Xu, Z., Fan, L., et al. (2019). Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Letters, 19(11), 7645–7654.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X., Zhang, J., Lu, N., Kim, M. J., Ghale, K., Xu, Y., et al. (2015). Pd–Ir core–shell nanocubes: A type of highly efficient and versatile peroxidase mimic. Acs Nano, 9(10), 9994–10004.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Wang, Y., Zhou, D., Kuang, M., Fang, D., Yang, W., et al. (2016). A novel chemiluminescence sensor for sensitive detection of cholesterol based on the peroxidase-like activity of copper nanoclusters. Scientific Reports, 6, 39157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, N., Patel, V., & Singh, S. (2019). Cerium oxide-based Nanozymes in biology and medicine. In Advances in spectroscopy: Molecules to materials (pp. 193–213). Singapore: Springer.

    Chapter  Google Scholar 

  • Yamakoshi, Y. N., Yagami, T., Sueyoshi, S., & Miyata, N. (1996). Acridine adduct of [60] fullerene with enhanced DNA-cleaving activity. The Journal of Organic Chemistry, 61(21), 7236–7237.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Z., Niu, Q., Mou, M., Wu, Y., Liu, X., & Liao, S. (2017). A novel colorimetric method based on copper nanoclusters with intrinsic peroxidase-like for detecting xanthine in serum samples. Journal of Nanoparticle Research, 19(7), 235.

    Article  CAS  Google Scholar 

  • Yesmurzayeva, N. N., Nurakhmetova, Z. A., Tatykhanova, G. S., Selenova, B. S., & Kudaibergenov, S. E. (2015). Catalytic activity of gold and silver nanoparticles supported on zinc oxide. Supramolecular Catalysis, 2, 1–8.

    Article  Google Scholar 

  • Zhang, Y., Nayak, T. R., Hong, H., & Cai, W. (2013). Biomedical applications of zinc oxide nanomaterials. Current Molecular Medicine, 13(10), 1633–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Xia, F., Song, Z., Webster, N. A., Luo, H., & Gao, Y. (2015). Synthesis and formation mechanism of VO2 (A) nanoplates with intrinsic peroxidase-like activity. RSC Advances, 5(75), 61371–61379.

    Article  CAS  Google Scholar 

  • Zhang, H., Liang, X., Han, L., & Li, F. (2018). Non-naked gold with glucose oxidase-like activity: A nanozyme for tandem catalysis. Small, 14(44), 1803256.

    Article  CAS  Google Scholar 

  • Zhao, M., & Crooks, R. M. (1999). Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angewandte Chemie International Edition, 38(3), 364–366.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, D., Chen, C., Lu, L., Yang, F., & Yang, X. (2015). A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles. Sensors and Actuators B: Chemical, 215, 437–444.

    Article  CAS  Google Scholar 

  • Zhbanov, A. I., Pogorelov, E. G., & Chang, Y. C. (2010). Van der Waals interaction between two crossed carbon nanotubes. ACS Nano, 4(10), 5937–5945.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, N., Singh, S. (2021). Nanoparticles Catalyzing Enzymatic Reactions: Recent Developments and Future Prospects. In: Singh, S. (eds) Emerging Trends in Nanomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-9920-0_3

Download citation

Publish with us

Policies and ethics