Skip to main content

PDMS on ZnO Thin Film: A Mask for ZnO Thin Film in MEMS Fabrication

  • Chapter
  • First Online:
Emerging Trends in Nanotechnology
  • 372 Accesses

Abstract

Zinc oxide (ZnO) is a multifunctional material and flaunts optical, piezoelectric and semiconducting properties. ZnO thin film, as a basic layer, is used in micro-electro-mechanical systems (MEMS)-based devices for sensing and actuation purpose. ZnO-based micro-electro-mechanical structures such as cantilevers and membranes require single-side processing of Si wafer. Dry etching process (DRIE) is desired way to etch silicon. Preferably, wet chemicals like potassium hydroxide (KOH), ethylene diamine pyrochatechol (EDP) or tetramethylammonium hydroxide (TMAH) can also be used to etch silicon in a more economical way. However, ZnO film is not amicable to such chemicals and dissolves in no time. Therefore, the protection of ZnO thin film in etching solvent is a very crucial issue while releasing this kind of structures. The chapter presents silicon wet etching experiments in tetramethylammonium hydroxide (TMAH) solution using silicon-based organic polymer as a protective mask for the zinc oxide sputtered side of wafer since it is difficult to use and remove SiO2 or Si3N4 as an etching barrier, in multilayer structures. A comprehensive characterization of ZnO thin film is performed to demonstrate that structural, mechanical and electrical properties of thin film remain unaltered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ozgur U, Alivov Y, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Google Scholar 

  2. Fu YQ, Luo JK, Du XY, Flewitt AJ, Li Y, Markx GH, Walton AJ, Milne WI (2010) Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens Actuat B 143:606

    Google Scholar 

  3. Baraki R, Novak N, Fromling T, Granzow T, Rodel J (2014) Bulk ZnO as piezotronic pressure sensor. App Phys Lett 105:111604

    Google Scholar 

  4. DeVoe DL, Pisano AP (2001) Surface micromachined piezoelectric accelerometers (PiXLs). J Microelectromech Syst 10:180

    Google Scholar 

  5. Percin G, Yakub BTK (2002) Piezoelectrically actuated flextensional micromachined ultrasound transducers. Ultrasonics 40:441

    Google Scholar 

  6. Scheeper P, Gullov JO, Kofoe LM (1996) A piezoelectric triaxial accelerometer. J Micromech Microeng 6:131

    Google Scholar 

  7. Ko SC, Kim YC, Lee SS, Choi SH, Kim SR (2003) Micromachined piezoelectric membrane acoustic device. Sens Actuat A 103:130

    Google Scholar 

  8. Lee SS, Ried RP, White RM (1996) Piezoelectric cantilever microphone and microspeaker. J Microelectromech Syst 5:238

    Google Scholar 

  9. Lee SH, Lee SS, Choi JJ, Jeon JU, Ro K (2005) Fabrication of a ZnO piezoelectric microcantilever with a high-aspect-ratio nanotip. Microsyst Technol 11

    Google Scholar 

  10. Brijesh K, Sang-Woo K (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1:342

    Google Scholar 

  11. Prusakova L, Novak P, Kulha P, Ocenasek J, Savkova J, Pastorek L, Sutta P (2015) Modeling and fabrication of single cantilever piezoelectric microgenerator with optimized ZnO active layer. Thin Solid Films

    Google Scholar 

  12. Seidel H, Csepregi L, Heuberger A, Baumgartel H (1990) Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I . Orientation Dependence and Behavior of Passivation Layers. J Electrochem Soc 137:3626

    Google Scholar 

  13. Marc JM (2002) Fundamentals of Microfabrication, 2nd edn. CRC Press

    Google Scholar 

  14. Taylor RF, Schultz JS (1996) Handbook of chemistry and biological sensors 49. IOP, Bristol

    Google Scholar 

  15. Jo B, Van Lerberghe L, Motsegood K, Beebe D (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9:76

    Google Scholar 

  16. Hosseini Yahya, Zellner Phillip, Agah Masoud (2013) A single-mask process for 3-D microstructure fabrication in PDMS. J Microelectromech Syst 22:356

    Google Scholar 

  17. Du P, Cheng C, Lu H, Zhang X (2013) Investigation of cellular contraction forces in the frequency domain using a PDMS micropillar based force transducer. J Microelectromech Syst 22:44

    Google Scholar 

  18. Xia YN, Whitesides GM (1998) Soft Lithography. Angew Chem Int Ed 37:550

    Google Scholar 

  19. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544

    Google Scholar 

  20. Dahiya RS, Valle M (2013) Robotic tactile sensing—technologies and system. Springer, Dordrecht

    Google Scholar 

  21. Rolland JP, Hagberg EC, Denison GM, Carter KR, DeSimoneAngew JM (2004) High-resolution soft lithography: enabling materials for nanotechnologies. Chem Int 43:5796

    Google Scholar 

  22. Liu C (2007) Recent Developments in Polymer MEMS. Adv Mater 19:3783

    Google Scholar 

  23. Peng K-G, Lee S-T (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23:198

    Google Scholar 

  24. Ko HC, Baca AJ, Rogers JA (2006) Bulk Quantities of Single-Crystal Silicon Micro-/Nanoribbons Generated from Bulk Wafers. Nano Lett 6:2318

    Google Scholar 

  25. Peng Y, Wang T, Jiang W, Liu X, Wen X, Wang G (2018) Modeling and optimization of inductively coupled wireless bio-pressure sensor system using the design of experiments method. IEEE Trans Compon Pack Manuf Technol 8(1):65

    Google Scholar 

  26. Zhou X-P, Deng R-S, Zhu J-Y (2018) Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer. J Micromech Microeng 28(8):085020

    Google Scholar 

  27. Lee D-W, Choi Y-S (2008) A novel pressure sensor with a PDMS diaphragm. Microelectron Eng 85(5–6):1054

    Google Scholar 

  28. Kim BJ, Meng E (2015) Review of polymer MEMS micromachining. J Micromech Microeng 26(1):013001

    Google Scholar 

  29. Liu X, Zhu Y, Nomani MW, Wen X, Hsia T-Y, Koley G (2013) A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications. J Micromech Microeng 23(2):025022

    Google Scholar 

  30. Xue N, Gao G, Sun J, Liu C, Li T, Chi C (2018) Systematic Study and Experiment of Flexible Pressure and Tactile Sensing Array for Wearable Devices Applications. J Micromech Microeng 28(7):075019

    Google Scholar 

  31. Kovacs GTA, Maluf NI, Petersen KE (1998) Bulk micromachining of silicon. Proc IEEE 86–8:1536

    Google Scholar 

  32. Prasad M, Sahula V, Khanna VK (2014) ZnO etching and microtunnel fabrication for high-reliability MEMS Acoustic Sensor. IEEE Trans Device Mater Reliab 14–1:545

    Google Scholar 

  33. Polla DL, Yoon H, Tamagawa T, Voros K (1989) Integration of Surface-Micromachined Zinc Oxide Sensors in n-Well CMOS Technology. IEEE International electron devices meeting. Washington, DC

    Google Scholar 

  34. Prasad M, Sahula V, Khanna VK (2013) Design and fabrication of Si-diaphragm, ZnO piezoelectric film-based MEMS acoustic sensor using SOI wafers. IEEE Trans Semicond Manuf 26–2:233

    Google Scholar 

  35. Kim S-H, Lee J-S, Choi H-C, Lee Y-H (1999) The fabrication of thin-film bulk acoustic wave resonators employing a ZnO/Si composite diaphragm structure using porous silicon layer etching. IEEE Electron Device Lett 20–3:113

    Google Scholar 

  36. Ray R, Ramgopal Rao V (2013) ZnO Nanowire Embedded Strain Sensing Cantilever: A New ultra-sensitive Technology Platform. J Microelectromech Syst 22:995

    Google Scholar 

  37. Jia Y, Sheshia AA (2015) Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J Microelectromech Syst 25:108

    Google Scholar 

  38. Bausells J (2015) Piezoresistive cantilevers for nanomechanical sensing. Microelectron Eng 145:9

    Google Scholar 

  39. Shokuhfar A, Heydari P, Aliahmadi MR, Mohtashamifar M, Ebrahimi-nejad SR, Zahedinejad M (2012) Low-cost polymeric microcantilever sensor with titanium as piezoresistive material. Microelectron Eng 98:338

    Google Scholar 

  40. Joshi P, Singh J, Sharma R, Jain VK, Akhtar J (2018) A facile approach to fabricate ZnO thin film based micro-cantilevers. Microelectron Eng 187:50

    Google Scholar 

  41. Joshi P, Kumar S, Jain VK, Akhtar J, Singh J (2019) Distributed MEMS Mass-Sensor Based on Piezoelectric Resonant Micro-Cantilevers. J Microelectromech Syst 1057:7157

    Google Scholar 

  42. Tabata O (1996) pH-controlled TMAH etchants for silicon micromachining. Sens Actuat A 53:335

    Google Scholar 

  43. Sakaino K, Adachi S (2001) Study of Si(1 0 0) surfaces etched in TMAH solution. Sens Actuat A 88:71

    Google Scholar 

  44. Joshi P, Singh J, Jain VK, Akhtar J (2020) Nanotechnology for energy and environmental engineering. green energy and technology. Springer, Cham, 495

    Google Scholar 

  45. Takayama S et al (2001) Topographical Micropatterning of Poly(dimethylsiloxane) Using Laminar Flows of Liquids in Capillaries. Adv Mater 13:570

    Google Scholar 

  46. Balakrishnam B, Patil S, Smela E (2009) Patterning PDMS using a combination of wet and dry etching. J Micromech Microeng 19:1

    Google Scholar 

  47. Xu JQ, Pan QY, Shun YA, Tian ZZ (2007) Grain size control and gas sensing properties of ZnO gas sensor. Sens Actuat B 66:277

    Google Scholar 

  48. Williamson GB, Smallman RC (1956) islocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag 1:34

    Google Scholar 

  49. Wang XS, Wu ZC, Webb JF, Liu ZG (2003) Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Appl Phys A 77:561

    Google Scholar 

  50. Barret CS, Massalski TB (1980) Structure of metals. Pergamon Press, Oxford

    Google Scholar 

  51. Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc London Ser A 82:172

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the DST-FIST support X-ray diffraction facility of the physics department, BITS Pilani. Dr Jitendra Singh is thanked for his help in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, P., Akhtar, J. (2021). PDMS on ZnO Thin Film: A Mask for ZnO Thin Film in MEMS Fabrication. In: Khan, Z.H. (eds) Emerging Trends in Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9904-0_9

Download citation

Publish with us

Policies and ethics