Skip to main content

Wet Etching and Cleaning

  • Chapter
  • First Online:
Silicon Sensors and Actuators

Abstract

Wet chemical processes are vastly employed in microelectronics fabrication industry, either for actively defining functional features or as cleaning and refining steps, preparatory to other key processes. All wet processes are fundamentally hinged on chemical and physical properties of specific liquid formulations in which each component, solvent or chemically active species, is chosen to selectively attack (etch) or remove (clean) target materials or substrates. The following chapter aim is to provide an overview on wet etching and cleaning procedures involved in Micro Electro-Mechanical Systems (MEMS) fabrication. Latest advancements in MEMS technologies and MEMS portfolio widening, with increasingly demanding performance and stringent features, imposed a rapid and flawless update of wet etching and cleaning technologies, to ensure devices’ long-term reliability. Within this figure of merit, specific focus will be dedicated to wet etching (Sect. 12.1) and wet cleaning (Sect. 12.2) in the most significative steps involved in MEMS sensors and actuators manufacturing. Precisely, silicon isotropic and anisotropic wet etching will be tackled and discussed first, as well-established techniques involved in silicon polishing and silicon patterning exploiting silicon crystalline properties, respectively. After e brief reference to dielectrics etching, a subject widely covered in literature, attention will be dedicated to metal etching, and in particular to gold and aluminum, titanium, and titanium–tungsten alloys. Such metal layers play a fundamental role in signal routing and act as physical barrier or seed layer for Electrochemical Deposition (ECD). Surface cleaning and photoresist removal step will be then faced within this chapter. Standard wet cleaning, preparatory to dielectrics or metals deposition, will be thoroughly presented first. Later, specific solvent-based cleanings will be introduced as innovative solutions studied for specific applications, including deep silicon etch, piezoelectric materials definitions, and lift-off processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this kind of tools which combine different process stations (wet station for soaking, single wafer high-pressure module, and rinse module) soaking time is not fixed, but depends on wafer handling and process time in all the modules. Hence, for a full cassette (from wafer 1 to wafer 25), lot soaking time is typically a curve (see Fig. 9.18).

References

  1. Dutta, S., Imran, M., Kumar, P., Pal, R., Datta, P., & Chatterjee, R. (2011). Microsystem Technologies, 17, 1621.

    Article  Google Scholar 

  2. Ruzyllo, J. (1998). Proceedings of the fifth international symposium on cleaning technology in semiconductor device manufacturing, proceeding volume 97- electrochemical society 35.

    Google Scholar 

  3. Landesberger, C., Paschke, C., Spöhrle, H-P., & Bock, K. (2014). Handbook of 3D Integraion: 3D process technology, chapter 16: Backside thinning and stress-relief techniques for silicon wafers, pp. 207–226.

    Google Scholar 

  4. Pei, Z. J., Billingsley, S. R., & Miura, S. (1999). International Journal of Machine Tools and Manufacture, 39, 1103–1116.

    Article  Google Scholar 

  5. Kobayashi, H., Maida, A. O., Takahashi, M., & Iwasa, H. (2003). Journal of Applied Physics, 94(11), 7328–7335.

    Article  Google Scholar 

  6. Williams, K. R., Gupta, K., & Wasilik, M. (2003). The Journal of Microelectromechanical Systems, 12(6), 761–778.

    Article  Google Scholar 

  7. Jakob, P., & Chabal, Y. J. (1991). The Journal of Chemical Physics, 95, 2897.

    Article  Google Scholar 

  8. Schwartz, B., & Robbins, H. (1961). Journal of the Electrochemical Society, 108, 365–372.

    Article  Google Scholar 

  9. Liu, L., Lin, F., Heinrich, M., Aberle, A. G., & Hoex, B. (2013). ECS Journal of Solid State Science and Technology, 2(9), 380–383.

    Article  Google Scholar 

  10. Seidel, H., Csepregi, L., Hueberger, A., & Baumgärtel, H. (1990). Journal of the Electrochemical Society, 137, 3612.

    Article  Google Scholar 

  11. Zubel, I., Barycka, I., Kotowska, K., & Kramkowska, M. (2001). Sensors Actuators, A, 87, 163–171.

    Article  Google Scholar 

  12. Kramkowska, M., & Zubel, I. (2009). Procedia Chemistry, 1, 774–777.

    Article  Google Scholar 

  13. Zubel, I., & Barycka, I. (1998). Sensors Actuators, A, 70, 250–259.

    Article  Google Scholar 

  14. Pal, P., & Sato, K. (2015). Micro and Nano Systems Letters, 3, 6.

    Article  Google Scholar 

  15. Sundaram, K. B., Vijayakumar, A., & Subramanian, G. (2005). Microelectronic Engineering, 77, 230–241.

    Article  Google Scholar 

  16. Adams, A. C. (1986). Silicon nitride and other insulator films. In J. Mort & F. Jansen (Eds.), Plasma Deposited Thin Films (Vol. 5). CRC.

    Google Scholar 

  17. Spierings, G. A. C. M. (1993). Journal of Materials Science, 28, 6261–6273.

    Article  Google Scholar 

  18. Sundaram, K. B., Sah, R. E., Baumann, H., Balachandran, K., & Todi, R. M. (2003). Microelectronic Engineering, 70, 109–114.

    Article  Google Scholar 

  19. Seo, D., Bae, J. S., Oh, E., Kim, S., & Lim, S. (2014). Microelectronic Engineering, 118, 66–71.

    Article  Google Scholar 

  20. Nichol, M. J. (1980). Gold Bulletin, 13(2), 46–55.

    Article  Google Scholar 

  21. Green, T. A. (2014). Gold Bulletin, 47, 205–216.

    Article  Google Scholar 

  22. Eidelloth, W., & Sandstrom, R. L. (1991). Applied Physics Letters, 59, 1632.

    Article  Google Scholar 

  23. Muraa, G., Vanzi, M., Stangoni, M., Ciappa, M., & Fichtner, W. (2003). Microelectronics Reliability, 43, 1771–1776.

    Article  Google Scholar 

  24. Gabette, L., Segaud, R., Fadloun, S., Avale, X., & Besson, P. (2009). ECS Transactions, 25(5), 337–344.

    Article  Google Scholar 

  25. Köhler, M. (1999). Etching in microsystem technology. Wiley-VCH.

    Book  Google Scholar 

  26. Tsujimuraa, T., & Makita, A. (2002). Journal of Vacuum Science and Technology B, 20(5), 1907–1913.

    Article  Google Scholar 

  27. Scotti, G., Kanninen, P., Kallio, T., & Franssila, S. (2014). The Journal of Microelectromechanicalsystems, 23(2), 372–379.

    Article  Google Scholar 

  28. Matylitskaya, V., Partel, S., & Kasemann, S. (2015). International conference on applied physics of condensed matter and of the scientific conference advanced fast reactors. Proceedings 21, International Nuclear Information System, 49(22).

    Google Scholar 

  29. Verhaverbeke, S., & Parker, J. W. (1998). Proceedings of the fifth international symposium on cleaning technology in semiconductor device manufacturing (Ruzyllo J & Novak RE (Eds.), p. 184) Pennington, USA.

    Google Scholar 

  30. Hill, M. (1980). Solid State Technology, 53.

    Google Scholar 

  31. van den Meerakker, J. E. A. M., Scholten, M., & van Oekel, J. J. (1992). Thin Solid Films, 208, 237–242.

    Article  Google Scholar 

  32. Nave, M. I., & Kornev, K. G. (2017). Metallurgical and Materials Transactions A, 48, 1414–1424.

    Article  Google Scholar 

  33. Castoldi, L., Visalli, G., Morin, S., Ferrari, P., Alberici, S., Ottaviani, G., Corni, F., Tonini, R., Nobili, C., & Bersani, M. (2004). Microelectronic Engineering, 76, 153–159.

    Article  Google Scholar 

  34. Hampden-Smith, M. J., & Kodas, T. T. (1993). MRS Bulletin, 18(6), 39–45.

    Article  Google Scholar 

  35. Huang, Q., & Podlaha, E. J. (2005). Selective etching of CoFeNiCU/Cu multilayers. Journal of Applied Electrochemistry, 35(127–132).

    Google Scholar 

  36. Wu, Y. B., Ding, G. F., Wang, H., & Zhang, C. C. (2011). Efficient solution to selective wet etching of ultra-thick copper sacrificial layer with high selective etching ratio, 16th International Solid-State Sensors, Actuators and Microsystems Conference.

    Google Scholar 

  37. Choi, T.-S., & Hess, D. W. (2015). Chemical etching and patterning of copper, silver, and gold films at low temperatures. ECS Journal of Solid State Science and Technology, 4(1), N3084–N3093.

    Article  Google Scholar 

  38. Merlijn van Spengen, W. (2003). MEMS reliability from a failure mechanisms perspective. Microelectronics Reliability, 43(7), 1049–1060.

    Article  Google Scholar 

  39. Singh, Contamination in MEMS processes and removal methodology, IJME Vol 3 Iss 1 Paper 8, 375–378.

    Google Scholar 

  40. Schwartzman, S., Mayer, A., & Kern, W. (1985). Megasonic Particle Removal from Solid-State Wafers, RCA Rev, 46, 81.

    Google Scholar 

  41. Itoh, H. (1998). Ultraclean surface processing of silicon wafer: Secrets of VLSI manufacturing (T. Hattori, Ed., pp 503-507). Springer.

    Google Scholar 

  42. Riley, D. J., & Carbonell, R. G. (1993). Journal of Colloid and Interface Science, 158, 259.

    Article  Google Scholar 

  43. Kern, W., & Puotinen, D. A. (1970). RCA Review, 31(6), 187.

    Google Scholar 

  44. Kern, W. (1990). In J. Ruzyllo & R. E. Novak (Eds.), First international symposium on cleaning technology in semiconductor device manufacturing, 90-9 (p. 3). The Electrochemical Society.

    Google Scholar 

  45. Kern, W. (1990). In J. Ruzyllo & R. E. Novak (Eds.), First international symposium on cleaning Technology in Semiconductor Device Manufacturing, 90-9 (p. 3). The Electrochemical Society.

    Google Scholar 

  46. Gale, G. W., Cui, H., & Reinhardt, K. A. (2018). Aqueous cleaning and surface conditioning processes. Handbook of silicon wafer cleaning technology, pp. 201–202.

    Google Scholar 

  47. Mori, Y., Uemura, K., Shimanoe, K., & Sakon, T. (1995). Journal of the Electrochemical Society, 142, 3104.

    Article  Google Scholar 

  48. Hiemenz, P. C., & Rajagopalan, R. (1997). Principles of colloids surface chemistry (3rd ed.). Marcel Dekker.

    Google Scholar 

  49. Celler, G. K. (2000). Etching of silicon by the RCA standard clean 1. Electrochemical and Solid-State Letters, 3(1), 47–49.

    Article  Google Scholar 

  50. Kern, F. W., & Gale, G. W. (2000). In Y. Nishi & R. Doering (Eds.), Handbook of semiconductor manufacturing technology (p. 87). Marcel Dekker.

    Google Scholar 

  51. Takahashi, I., Kobayashi, H., Ryuta, J., Kishimoto, M., & Shingyouji, T. (1993). Japanese Journal of Applied Physics, 32, L1183.

    Article  Google Scholar 

  52. Chiarello, R. P., Parker, R., Helms, C. R., Chen, W., Tang, S., & Cook, L. J. (1997). In G. Higashi, M. Hirose, S. Raghavan, & S. Verhaverbeke (Eds.), Symposium proceedings, science technology for semiconductor surface preparations (Vol. 477, p. 533). Materials Research Society.

    Google Scholar 

  53. Kasi, S., & Liehr, M. (1990). Applied Physics Letters, 57(20), 2095.

    Article  Google Scholar 

  54. Marra, J., & Huethorst, J. A. M. (1991). Langmuir, 7, 2748.

    Article  Google Scholar 

  55. Pilloux, Y. (2017). China semiconductor technology international conference (CSTIC), 12–13 March 2017, Shangai, China.

    Google Scholar 

  56. Kvakovszky, G., McKim, A., & Moore, J. C. (2007). ECS Transactions, 2, 11.

    Google Scholar 

  57. Foley, R. T., & Nguyen, T. H. (1980). Journal of the Electrochemical Society, 127, 2563.

    Article  Google Scholar 

  58. Bertagna, V., Erre, R., Rouelle, F., & Chemla, M. (1999). Journal of the Electrochemical Society, 146(1), 83–90.

    Article  Google Scholar 

  59. Seidel, H., Csepregi, L., Heuberger, A., & Baumgartel, H. (1990). Journal of the Electrochemical Society, 137, 11.

    Article  Google Scholar 

  60. Kobayashi, S., Hara, T., Oguchi, T., Asaji, Y., Yaji, K., & Ohwada, K. (1999). Double-frame silicon gyroscope packaged under low pressure by wafer bonding. In Transducers'99 (pp. 910–913).

    Google Scholar 

  61. Kullberg, R. C. (2009). Review of vacuum packaging and maintenance of MEMS and the use of getters therein. Journal of Micro/Nanolithography, MEMS, and MOEMS, 8(3), 031307.

    Article  Google Scholar 

  62. Kvakovszky, G., McKim, A. S., & Moore, J. (2007). A review of microelectronic manufacturing applications using DMSO-based chemistries. ECS Transactions, 11(2), 227–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Longoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longoni, G., Assanelli, D., De Marco, C. (2022). Wet Etching and Cleaning. In: Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S. (eds) Silicon Sensors and Actuators. Springer, Cham. https://doi.org/10.1007/978-3-030-80135-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80135-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80134-2

  • Online ISBN: 978-3-030-80135-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics