Skip to main content

Photoluminescence and Chemoresistive Gas Sensing: A Comparative Study Using V2O5 Nanostructures for NH3

  • Chapter
  • First Online:
Emerging Trends in Nanotechnology

Abstract

In this study, pristine and tin-doped vanadium pentoxide nanoparticles were synthesized via hydrothermal method and characterized using X-ray diffraction (XRD), Raman, transmission electron microscopy (TEM) and photoluminescence spectroscopy confirmed the orthorhombic structure, single phase and chain-layered structure. Microstructural analysis revealed the morphology of V2O5 as chain-layered-like structure. The crystallite size with microstrain with the peak-broadening of doped and undoped V2O5 nanoparticles was analyzed by William–Hall (W-H) method. The effect of Sn dopant on the crystallite size, morphology and luminescence property showed that the crystallite size reduces to 53.45 nm in the presence of Sn dopant. Optical sensing study on pure and Sn-doped V2O5 at room temperature showed the maximum 79.94% sensitivity for 45 ppm ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang J, Qin Z, Zenf D, Xie C (2017) Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys Chem Chem Phys 19(9):6313–6329

    Google Scholar 

  2. Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH (2003) CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436(1):17–24

    Google Scholar 

  3. He X, Li J, Gao X, Li W (2003) NO2 sensing characteristics of WO3 thin film microgas sensor. Sens Actuat B Chem 93(1–3):463–467

    Google Scholar 

  4. Shankar P, Rayappan JBB (2015) Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review. Sci Lett J 4(4):126

    Google Scholar 

  5. Tomchenko Alexey A, Gregory P, Harmer, Brent TM, John WA (2003) Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens Actuat B Chem 93(1–3):126–134

    Google Scholar 

  6. Kanan SM, Oussama M, El-Kadri IA, Abu-Yousef, Marsha CK (2009) Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9(10):8158–8196

    Google Scholar 

  7. Zhang T, Zeng Y, Fan HT, Wang LJ, Wang R, Fu WY, Yang HB (2009) Synthesis, optical and gas sensitive properties of large-scale aggregative flower like ZnO nanostructures via simple route hydrothermal process. J Phys D Appl Phys 42(4):045103

    Google Scholar 

  8. Kanazawa E, Sakai G, Shimanoe K, Kanmura Y, Teraoka Y, Miura N, Yamazoe N (2001) Metal oxide semiconductor N2O sensor for medical use. Sens Actuat B Chem 77(1–2):72–77

    Google Scholar 

  9. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B 139(1):1–23

    Google Scholar 

  10. Bochenkov VE, Sergeev GB (2010) Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Metal Oxide Nanostruct Appl 3:31–52

    Google Scholar 

  11. Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius’ J Anal Chem 365(4):287–304

    Google Scholar 

  12. Valerini D, Cretì A, Caricato AP, Lomascolo M, Rella R, Martino M (2010) Optical gas sensing through nanostructured ZnO films with different morphologies. Sens Actuat B Chem 145(1):167–173

    Google Scholar 

  13. Lakshmi K, Basha SS, Rao MC (2017) Optical and photoluminescent studies On VO2+ Doped SnO2 Thin Films. RASAYAN J Chem 10:682–688

    Google Scholar 

  14. Manap H, Dooly G, O'Keeffe S, Lewis E (2009, October) Ammonia detection in the UV region using an optical fiber sensor. In Sensors. IEEE, pp 140–145

    Google Scholar 

  15. Mount GH, Rumburg B, Havig J, Lamb B, Westberg H, Yonge D, Kincaid R (2002) Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet. Atmosp Environ 36(11):1799–1810

    Google Scholar 

  16. Anpo M, Tanahashi I, Kubokawa Y (1980) Photoluminescence and photoreduction of vanadium pentoxide supported on porous Vycor glass. J Phys Chem 84(25):3440–3443

    Google Scholar 

  17. Vinita P (2017) Synthesis and application of metal doped SnO2 nanostructures in Photoluminescence based NH3 gas. M.A.N.I.T., India (Ph.D. Thesis)

    Google Scholar 

  18. Pandey V, Singh N, Malik MM, Khan FZ (2017) SnO2, SnO2: Mg and SnO2: Ni nanoparticles based luminescence ammonia sensors. Mater Focus 6(3):359–363

    Google Scholar 

  19. Ye Z, Tai H, Guo R, Yuan Z, Liu C, Su Y, ... Jiang Y (2017) Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology. Appl Surf Sci 419:84–90

    Google Scholar 

  20. Mishra KM, Lal AK, Haque FZ (2004) Ionic and electronic conductivity in some alkali vanadates. Solid State Ionics 167(1–2):137–146

    Article  CAS  Google Scholar 

  21. Singh N, Pandey V, Singh N, Malik MM, Haque FZ (2017) Application of TiO2/SnO2 nanoparticles in photoluminescence based fast ammonia gas sensing. J Opt 46(3):199–203

    Google Scholar 

  22. Kulandaisamy AJ, Reddy JR, Srinivasan P, Babu KJ, Mani GK, Shankar P, Rayappan JBB (2016) Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping. J Alloys Comp 688:422–429

    Google Scholar 

  23. Modafferi V, Panzera G, Donato A, Antonucci PL, Cannilla C, Donato N, Neri G (2012) Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens Actuat B Chem 163(1):61–68

    Google Scholar 

  24. Takao Y, Miyazaki K, Shimizu Y, Egashira M (1994) High ammonia sensitive semiconductor gas sensors with double‐layer structure and interface electrodes. J Electrochem Soc 141(4):1028–1034

    Google Scholar 

  25. Raj AD, Pazhanivel T, Suresh Kumar P, Mangalaraj D, Nataraj D, Ponpandian N (2010) Self assembled V2O5 nanorods for gas sensors. Curr Appl Phys 10(2):531–537

    Google Scholar 

  26. Srivastava V, Jain K (2015) Mechanism of enhancement in NH3 sensing for surface functionalized WO3 film. RSC Adv 5(70):56993–56997

    Article  CAS  Google Scholar 

  27. Ramgir N, Datta N, Kaur M, Kailasaganapati S, Debnath AK, Aswal DK, Gupta SK (2012). Ammonia sensor based on WO3 thin films. AIP Conf Proc 1451(1):185–187

    Article  CAS  Google Scholar 

  28. Nguyen DD, Dang DV, Nguyen DC (2015) Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature. Adv Nat Sci: Nanosci Nanotech 6(3):035006

    Google Scholar 

  29. Urasinska-Wojcik B, Vincent TA, Gardner JW (2016) H2S sensing properties of WO3 based gas sensor. Procedia Eng 168:255–258

    Article  CAS  Google Scholar 

  30. Szilágyi IM, Saukko S, Mizsei J, Tóth AL, Madarász J, Pokol G (2010) Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci 12(11):1857–1860

    Article  Google Scholar 

  31. Khadayate RS, Waghulde RB, Wankhede MG, Sali JV, Patil PP (2007) Ethanol vapour sensing properties of screen printed WO3 thick films. Bull Mat Sci 30(2):129–133

    Article  CAS  Google Scholar 

  32. Park S, Kim S, Sun GJ, Choi SB, Lee S, Lee C (2015) Ethanol sensing of SnO2-WO3 core/shell nanowires. Electron Mat Lett 11(5):896–901

    Article  CAS  Google Scholar 

  33. Patil DR, Patil LA, Patil PP (2007) Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sens Actuators B: Chem 126(2):368–374

    Article  CAS  Google Scholar 

  34. Mani GK, Rayappan JBB (2015) A highly selective and wide range ammonia sensor—Nanostructured ZnO: Co thin film. Mat Sci Eng: B 191:41–50

    Article  CAS  Google Scholar 

  35. Kamble VB, Umarji AM (2013) Gas sensing response analysis of p-type porous chromium oxide thin films. J Mat Chem C 1(48):8167–8176

    Article  CAS  Google Scholar 

  36. Liu H, Du X, Xing X, Wang G, Qiao SZ (2012) Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. Chem Commun 48(6):865–867

    Article  CAS  Google Scholar 

  37. Mishra D, Mishra KM, Singh N, Haque FZ (2014) Photoluminescence based fast detection of ammonia gas through TiO2 nanoparticles. J Adv Phys 5:220–224

    Article  Google Scholar 

  38. Li Y, Yao J, Uchaker E, Zhang M, Tian J, Liu X, Cao G (2013) Sn-doped V2O5 film with enhanced lithium-ion storage performance. J Phys Chem C 117(45):23507–23514

    Article  CAS  Google Scholar 

  39. McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W, Hubbard CR (1986) Methods of producing standard X-ray diffraction powder patterns. Powder Diffr 1(1):40–43

    Article  CAS  Google Scholar 

  40. Parra MR, Haque FZ (2015) Optical study and Ruthenizer (II) N3 dye-sensitized solar cell application of ZnO nanorod-arrays synthesized by combine two-step process. Opt Spectrom 119:672

    Google Scholar 

  41. Parra MR, Haque FZ (2015) Poly (Ethylene Glycol) (PEG)-assisted shape-controlled synthesis of one-dimensional ZnO nanorods. Optik 126:1562–1566

    Google Scholar 

  42. Siddiqui H, Qureshi MS, Haque FZ (2014) One-step, template-free hydrothermal synthesis of CuO tetrapods. Optik 125:4663–4667

    Article  CAS  Google Scholar 

  43. Siddiqui H, Qureshi MS, Haque FZ (2016) Surfactant assisted wet chemical synthesis of copper oxide (CuO)nanostructures and their spectroscopic analysis. Optik 127:2740–2747

    Article  CAS  Google Scholar 

  44. Rajeshwari S, Kumar JS, Rajendra kumar RT, Ponpandian N, Thangadurai P (2018) Influence of Sn ion doping on the photocatalytic performance of V2O5 nanorods prepared by hydrothermal method. Mater Res Exp 5(2):025507

    Google Scholar 

  45. Shen Y, Ding D, Deng Y (2011) Fabrication and characterization of WO3 flocky microspheres induced by ethanol. Powder Technol 211(1):114–119

    Article  CAS  Google Scholar 

  46. Ng SH, Patey TJ, Büchel R, Krumeich F, Wang JZ, Liu HK, Pratsinis SE, Novák P (2009) Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Phys Chem Chem Phys 11(19):3748–3755

    Article  CAS  Google Scholar 

  47. Kluensner T, Shen Q, Hlawacek G, Teichert C, Fateh N, Fontalvo GA, Mitterer C (2010) Morphology characterization and friction coefficient determination of sputtered V2O5 films. Thin Solid Films 519(4):1416–1420

    Article  CAS  Google Scholar 

  48. Parra MR, Haque FZ (2014) Aqueous chemical route synthesis and the effect ofcalcination temperature on the structural and optical properties of ZnO nanoparticles. J Mater Res Technol 3(4):363–369

    Article  CAS  Google Scholar 

  49. Haque FZ, Singh N, Pandey P, Parra MR (2013) Study of Zinc Oxide nano/micro rods grown on ITO and glass substrates. Optik 124:4167–4171

    Article  CAS  Google Scholar 

  50. Suresh R, Giribabu K, Manigandan R, Munusamy S, Praveen Kumar S, Muthamizh S, Stephen A, Narayanan V (2014)Doping of Co into V2O5 nanoparticles enhances photodegradation of methylene blue. J Alloys Comp 598:151–160

    Google Scholar 

  51. Tang H, Prasad K, Sanjines R, Schmid PE, Levy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75(4):2042–2047

    Article  CAS  Google Scholar 

  52. Tae KI, Choi AS, Jeong JW (2012) Precise control of a correlated color temperature tunable luminaire for a suitable luminous environment. Build Environ 57:302–312

    Article  Google Scholar 

  53. Schlecht U (2004)Gas-sensing properties of V2O5-nanofibers and carbon nanotubes. Ph.D. diss., Verlag nicht ermittelbar

    Google Scholar 

  54. Khan FZ, Husain M (2017) Sample Holder for optical gas sensing. Indian Paten/MUM/2015

    Google Scholar 

  55. Pandey V (2017) Synthesis and application of metal doped SnO2 nanostructures in Photoluminescence based NH3 gas. (P.hD. Thesis), M.A.N.I.T., India

    Google Scholar 

  56. Nitu S, Umar A, Singh N, Fouad H, Alothman OY, Haque FZ (2018) Highly sensitive optical ammonia gas sensor based on Sn-doped V2O5 Nanoparticles. Mater R Bull 108:266–274

    Google Scholar 

  57. Neha S (2017) Studies of metal doped ZnO nanostructures for photoluminescence based NO2 gas sensor. (Ph.D. Thesis), M.A.N.I.T., India

    Google Scholar 

  58. Mani GK, Rayappan JBB (2014) Influence of copper doping on structural, optical and sensing properties of spray deposited zinc oxide thin films. J Alloy Compd 582:414–419

    Article  CAS  Google Scholar 

  59. Khan H, Malook K, Shah M (2017) Highly selective and sensitive ammonia sensor using polypyrrole/V2O5 composites. J Mater Sci Mater Electron 28(18):13873–13879

    Google Scholar 

  60. Poloju M, Jayababu N, Reddy MR (2018) Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mat Sci Eng: B 227:61–67

    Google Scholar 

  61. Wang C, Li X, Yuan Y, Wang B, Huang J, Xia F, Xiao J (2017) Effects of sintering temperature on sensing properties of V2O5-WO3-TiO2 electrode for potentiometric ammonia sensor. Sens Actuators B: Chem 241:268–275

    Article  Google Scholar 

  62. Vijayakumar Y, Mani GK, Reddy MR, Rayappan JBB (2015) Nanostructured flower like V2O5 thin films and its room temperature sensing characteristics. Ceram Int 41(2):2221–2227

    Article  CAS  Google Scholar 

  63. Jin W, Yan S, An L, Chen W, Yang S, Zhao C, Dai Y (2015) Enhancement of ethanol gas sensing response based on ordered V2O5 nanowire microyarns. Sens Actuators B: Chem 206:284–290

    Article  CAS  Google Scholar 

  64. Modafferi V, Trocino S, Donato A, Panzera G, Neri G (2013) Electrospun V2O5 composite fibers: synthesis, characterization and ammonia sensing properties. Thin Solid Films 548:689–694

    Article  CAS  Google Scholar 

  65. Schlecht U, Besnard I, Yasuda A, Vossmeyer T, Burghard M (2003) V2O5 nanofiber-based chemiresistors for ammonia detection. AIP Conf Proc 685(1):491–494

    Article  CAS  Google Scholar 

  66. D’Arienzo M, Armelao L, Mari CM, Polizzi S, Ruffo R, Scotti R, Morazzoni F (2011) Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters. J Am Chem Soc 133(14):5296–5304

    Article  Google Scholar 

  67. Wang X, Miura N, Yamazoe N (2000) Study of WO3-based sensing materials for NH3 and NO detection. Sens Actuators B: Chem 66(1–3):74–76

    Article  CAS  Google Scholar 

  68. Wang Y, Liu J, Cui X, Gao Y, Ma J, Sun Y, Lu G (2017) NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens Actuators B: Chem 238:473–481

    Article  CAS  Google Scholar 

  69. Grace PS, Devadasan JJ, Jeyadheepan K, Thangam GJ (2017) Room temperature NH3–sensing properties of WO3 thin films synthesized by microprocessor controlled spray pyrolysis. IOSR J Appl Phy 3(01):52–56

    Article  Google Scholar 

  70. Zhang, D. (2017, December). IOP conference series: materials science and engineering. In: International conference on robotics and mechantronics (ICRoM 2017), vol. 12, p 14

    Google Scholar 

  71. Kohli N, Anita H, Ravi CS (2016) Gas sensing behaviour of Cr2O3 and W6+: Cr2O3 nanoparticles towards acetone. In: AIP conference proceedings, vol. 1731, no. 1. AIP Publishing, p 050044

    Google Scholar 

  72. Siddiqui H, Parra MR, Pandey P, Qureshi MS, Haque FZ (2020) Utility of copper oxide nanoparticles (CuO-NPs) as efficient electron donor material in bulk-heterojunction solar cells with enhanced power conversion efficiency. J Sci: Adv Mat Devices 5(1):104–110

    Google Scholar 

Download references

Acknowledgements

Authors are pleased to acknowledge the Director, MANIT, Bhopal, for providing necessary facilities for this work, and the Director, UGC-DAE-Consortium for Scientific Research, Indore Centre (M.P.), India, for XRD, FTIR, micro-Raman, thin film analyzer and UV–Vis measurements. Mr. Nitu Singh is thankful to MANIT for providing Institute Fellowship.

Competing interests

The authors declare that they have no competing interests and are alone responsible for the content and the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fozia Z. Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Bamne, J., Mishra, K.M., Singh, N., Haque, F.Z. (2021). Photoluminescence and Chemoresistive Gas Sensing: A Comparative Study Using V2O5 Nanostructures for NH3. In: Khan, Z.H. (eds) Emerging Trends in Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9904-0_10

Download citation

Publish with us

Policies and ethics