Skip to main content

Controlling Chaos Generated in Predator-Prey Interactions Using Adaptive Hybrid Combination Synchronization

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computing Informatics and Networks

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 167))

Abstract

In this research work, we study hybrid combination synchronization (HCS) between chaotic generalized three species Lotka-Volterra (GLV) biological system via adaptive control technique (ACT). Lotka and Volterra discovered the well-known illustrations of primary biological models. This system details the interaction between two species predator and prey. Though it is a very primary model, it has many drawbacks, for example, it avoids several essential characteristics, for instance, interplaying among numerous species of similar ecological community, connectivity with the ecosystem etc. Samardzija and Greller firstly investigated the dynamics and chaotic behavior of GLV biological system in 1988. Subsequently, the area of biological control for numerous biological systems existing in natural habitat has been a significant field for researchers and biologists. We here consider two predators and one prey population present in the system. The adaptive ecological control law in obtaining asymptotic HCS of state variables (SV) of considered system with uncertain parameters has been deduced utilizing Lyapunov stability theory (LST). Further, it is noticed that both anti-synchronization and complete synchronization coexist in HCS. Additionally, numerical simulations using MATLAB are displayed for illustrating the feasibility and efficiency of discussed approach. Remarkably, analytical and computational results agree excellently. The discussed approach is potentially applicable in areas of secure communication, encryption and control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Provata A, Katsaloulis P, Verganelakis DA (2012) Dynamics of chaotic maps for modelling the multifractal spectrum of human brain diffusion tensor images. Chaos Solitons Fractals 45(2):174–180

    Article  Google Scholar 

  2. Tong Xiao-Jun, Zhang Miao, Wang Zhu, Liu Yang, Ma Jing (2015) An image encryption scheme based on a new hyperchaotic finance system. Optik 126(20):2445–2452

    Article  Google Scholar 

  3. Bouallegue Kais (2017) A new class of neural networks and its applications. Neurocomputing 249:28–47

    Article  Google Scholar 

  4. Sahoo B, Poria S (2014) The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fractals 58:52–64

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghosh D, Mukherjee A, Das NR, Biswas BN (2018) Generation & control of chaos in a single loop optoelectronic oscillator. Optik 165:275–287

    Article  Google Scholar 

  6. Han SK, Kurrer C, Kuramoto Y (1995) Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75(17):3190

    Article  Google Scholar 

  7. Russell FP, Düben PD, Niu X, Luk W, Palmer TN (2017) Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures. Comput. Phys. Commun. 221:160–173

    Article  MathSciNet  Google Scholar 

  8. Wang X, Vaidyanathan S, Volos C, Pham V-T, Kapitaniak T (2017) Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dyn. 89(3):1673–1687

    Article  MathSciNet  MATH  Google Scholar 

  9. Shi Z, Hong S, Chen K (2008) Experimental study on tracking the state of analog chua’s circuit with particle filter for chaos synchronization. Phys. Lett. A 372(34):5575–5580

    Article  Google Scholar 

  10. Wu G-C, Baleanu D, Lin Z-X (2016) Image encryption technique based on fractional chaotic time series. J. Vib. Control 22(8):2092–2099

    Article  MathSciNet  Google Scholar 

  11. Lorenz EN (1963) Deterministic nonperiodic flow. J. Atmos. Sci. 20(2):130–141

    Article  MathSciNet  MATH  Google Scholar 

  12. Rössler OE (1976) An equation for continuous chaos. Phys. Lett. A 57(5):397–398

    Article  MATH  Google Scholar 

  13. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys. Rev. Lett. 64(8):821

    Article  MathSciNet  MATH  Google Scholar 

  14. Singh AK, Yadav VK, Das S (2017) Synchronization between fractional order complex chaotic systems. Int. J. Dyn. Control 5(3):756–770

    Article  MathSciNet  Google Scholar 

  15. Li C, Liao X (2004) Complete and lag synchronization of hyperchaotic systems using small impulses. Chaos Solitons Fractals 22(4):857–867

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma J, Mi L, Zhou P, Ying X, Hayat T (2017) Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307:321–328

    MathSciNet  MATH  Google Scholar 

  17. Sudheer KS, Sabir M (2009) Hybrid synchronization of hyperchaotic lu system. Pramana 73(4):781

    Article  MATH  Google Scholar 

  18. Khan, T., Chaudhary, H.: Estimation and Identifiability of Parameters for Generalized Lotka-Volterra Biological Systems using Adaptive Controlled Combination Difference Anti-synchronization

    Google Scholar 

  19. Khan, A. and Chaudhary, H.: Hybrid projective combination–combination synchronization in non-identical hyperchaotic systems using adaptive control. Arab. J. Math. pp. 1–15 (2020)

    Google Scholar 

  20. Li G-H, Zhou S-P (2007) Anti-synchronization in different chaotic systems. Chaos Solitons Fractals 32(2):516–520

    Article  Google Scholar 

  21. Ding Z, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw. 76:97–105

    Article  MATH  Google Scholar 

  22. Zhou P, Zhu W (2011) Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal. Real World Appl. 12(2):811–816

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu Z, Guo L, Hu M, Yang Y (2008) Hybrid projective synchronization in a chaotic complex nonlinear system. Math. Comput. Simul. 79(1):449–457

    MathSciNet  MATH  Google Scholar 

  24. Li G-H (2007) Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32(5):1786–1790

    Article  MathSciNet  MATH  Google Scholar 

  25. Delavari H, Mohadeszadeh M (2018) Hybrid complex projective synchronization of complex chaotic systems using active control technique with nonlinearity in the control input. J. Control Eng. Appl. Inf. 20(1):67–74

    Google Scholar 

  26. Vaidyanathan S, Mohadeszadeh M (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int. J. Autom. Comput. 9(3):274–279

    Article  Google Scholar 

  27. Jahanzaib LS, Trikha P, Chaudhary H, Haider SM et al (2020) Compound synchronization using disturbance observer based adaptive sliding mode control technique. J. Math. Comput. Sci. 10(5):1463–1480

    Google Scholar 

  28. Rasappan, S., Vaidyanathan, S.: Synchronization of hyperchaotic liu system via backstepping control with recursive feedback. In: International Conference on Eco-friendly Computing and Communication Systems, pp. 212–221. Springer (2012)

    Google Scholar 

  29. Ayub Khan and Muzaffar Ahmad Bhat (2017) Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system. Int. J. Dyn. Control 5(4):1211–1221

    Article  MathSciNet  Google Scholar 

  30. Chen M, Han Z (2003) Controlling and synchronizing chaotic genesio system via nonlinear feedback control. Chaos Solitons Fractals 17(4):709–716

    Article  MathSciNet  MATH  Google Scholar 

  31. Li D, Zhang X (2016) Impulsive synchronization of fractional order chaotic systems with time-delay. Neurocomputing 216:39–44

    Article  Google Scholar 

  32. Hubler AW (1989) Adaptive control of chaotic system. Helv. Phys. Acta 62:343–346

    Google Scholar 

  33. Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15):3042

    Article  Google Scholar 

  34. Liao T-L, Tsai S-H (2000) Adaptive synchronization of chaotic systems and its application to secure communications. Chaos Solitons Fractals 11(9):1387–1396

    Article  MATH  Google Scholar 

  35. Yassen MT (2003) Adaptive control and synchronization of a modified chua’s circuit system. Appl. Math. Comput. 135(1):113–128

    MathSciNet  MATH  Google Scholar 

  36. Li Z, Daolin X (2004) A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22(2):477–481

    Article  MATH  Google Scholar 

  37. Li S-Y, Yang C-H, Lin C-T, Ko L-W, Chiu T-T (2012) Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy. Nonlinear Dyn. 70(3):2129–2143

    Article  MathSciNet  Google Scholar 

  38. Zhaoyan W, Duan J, Xinchu F (2012) Complex projective synchronization in coupled chaotic complex dynamical systems. Nonlinear Dyn. 69(3):771–779

    Article  MathSciNet  MATH  Google Scholar 

  39. Vaidyanathan S (2016) Hybrid synchronization of the generalized lotka-volterra three-species biological systems via adaptive control. Int. J. PharmTech. Res. 9(1):179–192

    Google Scholar 

  40. Vaidyanathan S (2015) Adaptive biological control of generalized lotka-volterra three-species biological system. Int. J. PharmTech. Res. 8(4):622–631

    Google Scholar 

  41. Khan A, Bhat MA (2017) Hyperchaotic analysis and adaptive projective synchronization of nonlinear dynamical system. Comput. Math. Model. 28(4):517–530

    Article  MathSciNet  MATH  Google Scholar 

  42. Khan A, Tyagi A (2017) Hybrid projective synchronization between two identical new 4-d hyper-chaotic systems via active control method. Int. J. Nonlinear. Sci 23(3):142–150

    Google Scholar 

  43. Khan A, Tyagi A (2017) Analysis and hyper-chaos control of a new 4-d hyper-chaotic system by using optimal and adaptive control design. Int. J. Dyn. Control 5(4):1147–1155

    Article  MathSciNet  Google Scholar 

  44. Samardzija N, Greller LD (1988) Explosive route to chaos through a fractal torus in a generalized lotka-volterra model. Bull. Math. Biol. 50(5):465–491

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harindri Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, T., Chaudhary, H. (2021). Controlling Chaos Generated in Predator-Prey Interactions Using Adaptive Hybrid Combination Synchronization. In: Abraham, A., Castillo, O., Virmani, D. (eds) Proceedings of 3rd International Conference on Computing Informatics and Networks. Lecture Notes in Networks and Systems, vol 167. Springer, Singapore. https://doi.org/10.1007/978-981-15-9712-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9712-1_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9711-4

  • Online ISBN: 978-981-15-9712-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics