Skip to main content
Log in

Synchronization between fractional order complex chaotic systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this article, the authors have studied synchronization between a pair of fractional order complex systems viz., Lorenz and Lu systems, Lu and T systems, Lorenz and T systems using active control method. The numerical results and simulation show that this method is effective to synchronize the fractional order complex dynamical systems. The main feature of the article is the comparison of time of synchronization when pair of systems approach from integer order to fractional order. The numerical results are carried out using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bagley RL, Calico RA (1991) Fractional order state equations for the control of viscoelastically damped structures. J Guid Control Dyn 14:304–311

    Article  Google Scholar 

  2. Koeller RC (1984) Application of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307

    Article  MathSciNet  MATH  Google Scholar 

  3. Yildirim A (2011) An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method. Int J Nonlinear Sci Numer Simul 10:445–451

    Google Scholar 

  4. Heaviside O (1971) Electromagnetic theory. Chelsea, New York

    MATH  Google Scholar 

  5. Carpinteri A, Cornetti P, Kolwankar KM (2004) Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Solitons Fractals 21:623–632

    Article  MATH  Google Scholar 

  6. Kulish VV, Lage JL (2002) Application of fractional calculusto fluid mechanics. J Fluids Eng 124:803–806

    Article  Google Scholar 

  7. Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59:1585–1593

    Article  MathSciNet  MATH  Google Scholar 

  8. Gokdogan A, Merdan M, Yildirim A (2012) A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun Nonlinear Sci Numer Simul 17:1–8

    Article  MathSciNet  Google Scholar 

  9. Ning CZ, Haken H (1990) Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Phys Rev A 41:3826–3837

    Article  Google Scholar 

  10. Roldan E, Devalcarcel GJ, Vilaseca R (1993) Single-modelaser phase dynamics. Phys Rev A 48:591–598

    Article  Google Scholar 

  11. Toronov VY, Derbov VL (1997) Boundedness of attractors in the complex Lorenz model. Phys Rev E 55:3689–3692

    Article  MathSciNet  Google Scholar 

  12. Luo C, Wang X (2013) Chaos in the fractional order complex Lorenz system and its synchronization. Nonlinear Dyn 71:241–257

    Article  MathSciNet  MATH  Google Scholar 

  13. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Let 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  14. Lakshmanan M, Murali K (1996) Chaos in nonlinear oscillators: controlling and synchronization. World Scientific, Singapore

    Book  MATH  Google Scholar 

  15. Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399:354–359

    Article  Google Scholar 

  16. Han SK, Kerrer C, Kuramoto Y (1995) D-phasing and bursting in coupled neural oscillators. Phys Rev Lett 75:3190–3193

    Article  Google Scholar 

  17. Cuomo KM, Oppenheim AV (1993) Circuit implementation of synchronized chaos with application to communication. Phys Rev Lett 71:65–68

    Article  Google Scholar 

  18. Murali K, Lakshmanan M (2003) Secure communication using a compound signal using sampled-data feedback. Appl Math Mech 11:1309–1315

    Google Scholar 

  19. Fowler AC, Gibbon JD, McGuinness MJ (1982) The complex Lorenz equations. Phys D 4:139–163

    Article  MathSciNet  MATH  Google Scholar 

  20. Mahmoud GM, Al-Kashif MA, Aly SA (2007) Basic properties and chaotic synchronization of complex Lorenz system. Int J Mod Phys C 18:253–265

    Article  MathSciNet  MATH  Google Scholar 

  21. Mahmoud GM, Bountis T, Mahmoud EE (2017) Active control and global synchronization of complex Chen and Lü systems. Int J Bifurc Chaos Appl Sci Eng 17:4295–4308

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang C, Liu S, Luo C (2014) A new fractional order chaotic complex system and its anti-synchronization. Hindawi Publication Corporation. doi:10.1155/2014/326354

  23. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos Solitons Fractals 36:1315–1319

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu X, Hong L, Yang L (2014) Fractional order complex T system: bifurcations, chaos control and synchronization. Nonlinear Dyn 75:589–602

    Article  MathSciNet  MATH  Google Scholar 

  25. Bai EW, Lonngren KE (1997) Synchronization of two Lorenz systems using active control. Chaos Solitons Fractals 8:51–58

    Article  MATH  Google Scholar 

  26. Ho MC, Hung YC (2002) Synchronization of two different systems by using generalized active control. Phys Lett A 301:424–428

    Article  MathSciNet  MATH  Google Scholar 

  27. Vincent UE, Laoye JA (2007) Synchronization and control of directed transport in inertial ratchets via active control. Phys Lett A 363:91–95

    Article  Google Scholar 

  28. Diethelm K, Ford J, Freed A (2004) Detailed error analysis for a fractional Adams method. Numer Algorithms 36:31–52

    Article  MathSciNet  MATH  Google Scholar 

  29. Diethelm K, Ford J (2004) Multi-order fractional differential equations and their numerical solution. Appl Math Comput 154:621–640

    MathSciNet  MATH  Google Scholar 

  30. Kilbas A, Srivastava HM, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  31. Agrawal SK, Srivastava M, Das S (2012) Synchronization of fractional order chaotic systems using active control method. Chaos Solitons Fractals 45:737–752

    Article  Google Scholar 

  32. Zhou P, Cheng X (2008) Synchronization between different fractional order chaotic systems, In: Proceeding of the 7th world congress on intelligent control automation, Chongqing, China, 25–27 June, 2008

  33. Matignon D (1996) Stability results on fractional differential equations with application to control processing. IMACS, IEEE-SMC, Lille

    Google Scholar 

Download references

Acknowledgments

The authors of the article express their thankful to the revered reviewers for their valuable suggestions for the improvement of the article. The first and second authors acknowledge the financial support from the UGC, New Delhi, India under the Senior Research Fellowship Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Yadav, V.K. & Das, S. Synchronization between fractional order complex chaotic systems. Int. J. Dynam. Control 5, 756–770 (2017). https://doi.org/10.1007/s40435-016-0226-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0226-1

Keywords

Navigation