Skip to main content

Mosquito Repellent: A Novel Approach for Human Protection

  • Chapter
  • First Online:
Molecular Identification of Mosquito Vectors and Their Management

Abstract

Mosquito is among the major important arthropod vectors that transmits diseases such as malaria, yellow fever, Rift Valley fever, dengue fever, and arboviral encephalitis. These diseases pose severe threat to human and animal health causing significant mortality all over the world. Although most parts of the world are affected by such mosquito-borne diseases, the rate of mortality is greater in tropical and subtropical region. Minimizing the suffering of human beings arising out of mosquito vectors has become a difficult task as absolute prevention from mosquitoes is really a challenging job. However, the mosquito-borne diseases can be minimized by avoiding direct contact of human beings with mosquitoes. In the absence of ample effective vaccines, mosquito repellents emerge out as the best possible alternative in this regard. These repellents create a virtual barrier between human beings and mosquitoes; reduce the biting of mosquitoes, thus minimize the probability of various diseases. Amongst several existing natural and synthetic mosquito repellents in the market, the use of N,N-diethyl-meta-toluamide (DEET) is the most common during last 60 years. Although the repellence activity of DEET is known for a quite long time, it suffers from numerous drawbacks, such as short-term protection from mosquitoes and has hazardous side effects like skin irritation. In recent times significant research has been carried out in this field and there is huge investment by several industries for developing preventives for mosquito-borne diseases. Since newer as well as safer technology is required for preventing genetically modified mosquitoes, absolute preventive measure for such mosquitoes is still a daunting task. A detailed knowledge about a repellent including the mechanism of prevention, its side effect will be helpful in this regard. Study of mosquitoes, their interaction with human beings, repellents and mode of action of these repellents is highly essential. It also requires research on mosquito, chemical repellents, a better knowledge of mosquito olfaction and behaviour, mosquito–host interactions, and the method of chemical interactions. During the last few decades, there was significant progress for developing structurally diverse mosquito repellent, both synthetic and natural, using safer and greener technologies. Development of new mosquito repellent has become the thrust area of research and has quite a lot of prospective to be explored in coming days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achee NL, Bangs MJ, Farlow R, Killeen GF, Lindsay S, Logan JG, Moore SJ, Rowland M, Sweeney K, Torr SJ, Zwiebel LJ, Grieco JP (2012) Spatial repellents: from discovery and development to evidence-based validation. Malar J 11:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali MYS, Ravikumar S, Beula JM (2013) Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pac J Trop Dis 3(3):196–201

    Article  PubMed Central  Google Scholar 

  • Alimi TO, Qualls WA, Roque DD, Naranjo DP, Samson DM, Beier JC, Xue RD (2013) Evaluation of a new formulation of permethrin applied by water-based thermal fogger against Aedes albopictus in residential communities in St. Augustine, Florida. J Am Mosq Control Assoc 29(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Alonso PL, Lindsay SW, Armstrong JRM, Conteh M, Hill AG, David PH, Fegan G, de Francisco A, Hall AJ, Shenton FC, Cham K, Greenwood BM (1991) The effect of insecticide-treated bed nets on mortality of Gambian children. Lancet 337:1499–1502

    Article  CAS  PubMed  Google Scholar 

  • Alpern JD, Dunlop SJ, Dolan BJ, Stauffer WM, Boulware DR (2016) Personal protection measures against mosquitoes, ticks, and other arthropods. Med Clin N Am 100:303–316

    Article  PubMed  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9(1):484–505

    Article  CAS  PubMed  Google Scholar 

  • Balaji APB, Mishra P, Suresh Kumar RS, Mukherjee A, Chandrasekaran N (2015) Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids Surf B Biointerfaces 128:370–378

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne B (2005) Toxicology update: 2-ethyl-1,3-hexanediol. J Appl Toxicol 25:248–259

    Article  CAS  PubMed  Google Scholar 

  • Banks SD, Murray N, Wilder-Smith A, Logan JG (2014) Insecticide-treated clothes for the control of vector-borne diseases: a review on effectiveness and safety. Med Vet Entomol 28:14–25

    Article  PubMed  Google Scholar 

  • Barasa SS, Ndiege IO, Lwande W, Hassanali A (2002) Repellent activities of stereoisomers of p-menthane-3,8-diols against Anopheles gambiae (Diptera: Culicidae). J Med Entomol 39(5):736–741

    Article  CAS  PubMed  Google Scholar 

  • Barnard DR (1999) Repellency of essential oils to mosquitoes (Diptera: Culicidae). J Med Entomol 36(5):625–629

    Article  CAS  PubMed  Google Scholar 

  • Barradas TN, Lopes LMA, Ricci-Júnior E, e Silva KGH, Mansur CRE (2013) Development and characterization of micellar systems for application as insect repellents. Int J Pharm 454(2):633–640

    Article  CAS  PubMed  Google Scholar 

  • Bissinger BW, Roe RM (2010) Tick repellents past, present and future. Pestic Biochem Physiol 96:63–79

    Article  CAS  Google Scholar 

  • Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4(9):e7032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown M, Hebert AA (1997) Insect repellents: an overview. J Am Acad Dermatol 36:243–249

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10(6):269–274

    Article  CAS  PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Cal K, Centkowska K (2008) Use of cyclodextrins in topical formulations: practical aspects. Eur J Pharm Biopharm 68:467–478

    Article  CAS  PubMed  Google Scholar 

  • Chang CP, Dobashi T (2003) Preparation of alginate complex capsules containing eucalyptus essential oil and its controlled release. Colloids Surf B Biointerfaces 32:257–262

    Article  CAS  Google Scholar 

  • Davies TGE, Field LM, Usherwood PNR, Williamson MS (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59(3):151–162

    Article  CAS  PubMed  Google Scholar 

  • Pages F, Dautel H, Duvallet G, Kahl O, de Gentile L, Boulanger N (2014) Tick repellents for human use: prevention of tick bites and tick-borne diseases. Vector Borne Zoonotic Dis 14(2):85–93

    Article  PubMed  Google Scholar 

  • Debboun M, Strickman D (2012) Insect repellents and associated personal protection for a reduction in human disease. Med Vet Entomol 27(1):1–9

    Article  PubMed  Google Scholar 

  • DeGennaro M (2015) The mysterious multi-modal repellency of DEET. Fly (Austin) 9(1):45–51

    Article  Google Scholar 

  • DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, Jasinskiene N, James AA, Vosshall LB (2013) Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Fabbro S, Nazzi F (2008) Repellent effect of sweet basil compounds on Ixodes ricinus ticks. Exp Appl Acarol 45:219–228

    Article  PubMed  CAS  Google Scholar 

  • Deletre E, Schatz B, Bourguet D, Chandre F, Williams L, Ratnadass A, Martin T (2016) Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26:127–142

    Article  CAS  Google Scholar 

  • Delong W, Weibin M, Mingchen J, Zhonglin Y, Juntao F, Xing Z (2016) pHEMA hydrogels with pendant triazinyl-β-cyclodextrin as an efficient and recyclable reservoir for loading and release of plant-based mosquito repellents: a new aqueous mosquito repellent formulation. RSC Adv 6:27301–27312

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Serrano L, Chung KW, Hoguet J, Key PB (2006) Effects of the insecticide permethrin on three life stages of the grass shrimp, Palaemonetes pugio. Ecotoxicol Environ Saf 64:122–127

    Article  CAS  PubMed  Google Scholar 

  • Dethier VG, Browne BL, Smith CN (1960) The designation of chemicals in terms of the responses they elicit from insects. J Econ Entomol 53(1):134–136

    Article  CAS  Google Scholar 

  • Dickens JC, Bohbot JD (2013) Mini review: mode of action of mosquito repellents. Pestic Biochem Physiol 106:149–155

    Article  CAS  Google Scholar 

  • Domb AJ, Marlinsky A, Maniar M, Teomim L (1995) Insect repellent formulations of N,N-diethyl-m-toluamide (deet) in a liposphere system: efficacy and skin uptake. J Am Mosq Control Assoc 11(1):29–34

    CAS  PubMed  Google Scholar 

  • Drapeau J, Verdier M, Touraud D, Kröckel U, Geier M, Rose A, Kunz W (2009) Effective insect repellent formulation in both surfactantless and classical microemulsions with a long-lasting protection for human beings. Chem Biodivers 6:934–947

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Grandon GM, Gezan SA, Armour JAL, Pickett JA, Logan JG (2015) Heritability of attractiveness to mosquitoes. PLoS One 10(4):e0122716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fradin MS (1998) Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med 128:931–940

    Article  CAS  PubMed  Google Scholar 

  • Frances SP, Wirtz RA (2005) Repellents: past, present, and future. J Am Mosq Control Assoc 21:1–3

    Article  CAS  PubMed  Google Scholar 

  • Gao DW, Wen ZD (2016) Phthalate esters in the environment: a critical review of their occurrence, biodegradation and removal during wastewater treatment processes. Sci Total Environ 541:986–1001

    Article  CAS  PubMed  Google Scholar 

  • Garson LR, Winnike ME (1968) Relationships between insect repellency and chemical and physical parameters-a review. J Med Ent 5(3):339–352

    Article  CAS  Google Scholar 

  • Goodyer LI, Croft AM, Frances SP, Hill N, Moore SJ, Onyango SP, Debboun M (2010) Expert review of the evidence base for arthropod bite avoidance. J Travel Med 17(3):182–192

    Article  PubMed  Google Scholar 

  • Granett P, French CF (1951) Further tests of dibutyl adipate as a tick repellent. J Econ Entomol 44(1):93–97

    Article  CAS  Google Scholar 

  • Guda T, Kain P, Sharma K, Pham CK, Ray A (2015) Repellent compound with larger protective zone than DEET identified through activity-screening of Ir40a neurons, does not require or function. bioRxiv. https://doi.org/10.1101/017145

  • Gupta RK, Bhattacharjee AK (2007) Discovery and design of new arthropod/insect repellents by computer-aided molecular modelling. In: Strickman D (ed) Insect repellents: principles, methods and uses. CRC Press, Boca Raton, pp 195–228

    Google Scholar 

  • Habeck JC, Diop L, Dickman M (2010) Synthesis of N,N-Diethyl-3-methylbenzamide (DEET): two ways to the same goal. J Chem Educ 87(5):528–529

    Article  CAS  Google Scholar 

  • Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160

    Article  CAS  PubMed  Google Scholar 

  • Harbach RE, Besansky NJ (2014) Mosquitoes. Curr Biol 24(1):R14–R15

    Article  CAS  PubMed  Google Scholar 

  • Heinz FX, Stiasny K (2012) Flaviviruses and flavivirus vaccines. Vaccine 30:4301–4306

    Article  CAS  PubMed  Google Scholar 

  • Hoel DF, Kline DL, Allan SA, Grant A (2007) Evaluation of carbon dioxide,1-octen-3-ol, and lactic acid as baits in mosquito magnetTM pro traps for Aedes albopictus in north Central Florida. J Am Mosq Control Assoc 23(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Hsieh WC, Chang CP, Gao YL (2006) Controlled release properties of chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloids Surf B Biointerfaces 53:209–214

    Article  CAS  PubMed  Google Scholar 

  • Işcan Y, Wissing SA, Hekimoğlu S, Müller RH (2005) Solid lipid nanoparticles (SLN™) for topical drug delivery: incorporation of the lipophilic drugs N,N-diethyl-m-toluamide and vitamin K. Pharmazie 60(12):905–909

    PubMed  Google Scholar 

  • Ishikawa T, Yamanaka A, Konishi E (2014) A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine 32(12):1326–1337

    Article  CAS  PubMed  Google Scholar 

  • Islam J, Zaman K, Chakrabarti S, Bora NS, Pathak MP, Mandal S, Junejo JA, Chattopadhyay P (2017) Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch. J Food Drug Anal 25(4):968–975

    Article  CAS  PubMed  Google Scholar 

  • Kain P, Boyle SM, Tharadra SK, Guda T, Pham C, Dahanukar A, Ray A (2013) Odour receptors and neurons for DEET and new insect repellents. Nature 502:507–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyansundaram M (1982) A preliminary report on the synthesis and testing of mosquito repellents. Ind J Med Res 76:190–194

    Google Scholar 

  • Karr JI, Speaker TJ, Kasting GB (2012) A novel encapsulation of N,N-diethyl-3-methylbenzamide (DEET) favourably modifies skin absorption while maintaining effective evaporation rates. J Control Release 160:502–508

    Article  CAS  PubMed  Google Scholar 

  • Katsuda Y (2012) Progress and future of pyrethroids. Top Curr Chem 314:1–30

    CAS  PubMed  Google Scholar 

  • Katz TM, Miller JH, Hebert AA (2008) Insect repellents: historical perspectives and new developments. J Am Acad Dermatol 58:865–871

    Article  PubMed  Google Scholar 

  • Kelly DW (2001) Why are some people bitten more than others? Trends Parasitol 17(12):578–581

    Article  CAS  PubMed  Google Scholar 

  • Klier M, Kuhlow F (1976) Neue insektenabwehrmittel – am stickst off disubstitutierte ß-Alaninderivative. J Soc Cosmet Chem 27:141–153

    CAS  Google Scholar 

  • Klun JA, Strickman D, Rowton E, Williams J, Kramer M, Roberts D, Debboun M (2004) Comparative resistance of Anopheles albimanus and Aedes aegypti to N,N-diethyl-3-methylbenzamide (Deet) and 2-methylpiperidinyl-3-cyclohexen-1-carboxamide (AI3-37220) in laboratory human-volunteer repellent assays. J Med Entomol 41(3):418–422

    Article  CAS  PubMed  Google Scholar 

  • Krajick K (2006) Medical entomology-keeping the bugs at bay. Science 313:36–38

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Prakash S, Kaushik MP, Rao KM (1992) Comparative activity of three repellents against the ticks Rhipicephalus sanguineus and Argas persicus. Med Vet Entomol 6:47–50

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2007) Molecular-based chemical prospecting of mosquito attractants and repellents. In: Debboun M, Frances S, Strickman D (eds) Insect repellents: principles, methods, and uses. CRC Press, Boca Raton, pp 229–248

    Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2014) The enigmatic reception of DEET − the gold standard of insect repellents. Curr Opin Insect Sci 6:93–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupi E, Hatz C, Schlagenhauf P (2013) The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. - a literature review. Travel Med Infect Dis 11(6):374–411

    Article  PubMed  Google Scholar 

  • Maibach HI, Khan AA, Akers W (1974) Use of insect repellents for maximum efficacy. Arch Dermatol 109:32–35

    Article  CAS  PubMed  Google Scholar 

  • Meshram GP, Rao KM (1988) N,N-diethylphenylacetamide, an insect repellent: absence of mutagenic response in the in vitro Ames test and in vivo mouse micronucleus test. Food Chem Toxicol 26(9):791–796

    Article  CAS  PubMed  Google Scholar 

  • Moore SJ (2016) A new perspective on the application of mosquito repellents. Lancet Infect Dis 16(10):1093–1094

    Article  PubMed  Google Scholar 

  • Moore SJ, Debboun M (2007) History of insect repellents. In: Debboun M, Frances SP, Strickman D (eds) Insect repellents: principles, methods and uses. CRC Press, Boca Raton, pp 3–29

    Google Scholar 

  • Moore SJ, Mordue Luntz AJ, Logan JG (2012) Insect bite prevention. Infect Dis Clin N Am 26:655–673

    Article  Google Scholar 

  • Moulin E, Selby K, Cherpillod P, Kaiser L, Boillat-Blanco N (2016) Simultaneous outbreaks of dengue, chikungunya and Zika virus infections: diagnosis challenge in a returning traveller with non-specific febrile illness. New Microb New Infect 11:6–7

    Article  CAS  Google Scholar 

  • Nentwig G (2003) Use of repellents as prophylactic agents. Parasitol Res 90:S40–S48

    Article  PubMed  Google Scholar 

  • Obermayr U, Ruther J, Bernier UR, Rose A, Geier M (2015) Evaluation of a push-pull approach for Aedes aegypti (L) using a novel dispensing system for spatial repellents in the laboratory and in a semi-field environment. PLoS One 10(6):e0129878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Opdyke DLJ (1979) Monographs on fragrance raw materials, 1st edn. Pregamon Press, New York

    Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Google Scholar 

  • Pates H, Curtis C (2005) Mosquito behavior and vector control. Annu Rev Entomol 50:53–70

    Article  CAS  PubMed  Google Scholar 

  • Pavela R, Benelli G (2016) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors – a review. Exp Parasitol 167:103–108

    Article  PubMed  Google Scholar 

  • Pérez SG, Ramos-López MA, Zavala-Sánchez MA, Cárdenas-Ortega NC (2010) Activity of essential oils as a biorational alternative to control coleopteran insects in stored grains. J Med Plants Res 4(25):2827–2835

    Google Scholar 

  • Phasomkusolsil S, Soonwera M (2011) Efficacy of herbal essential oils as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (say) and Anopheles dirus (Peyton and Harrison). Southeast Asian J Trop Med Public Health 42(5):1083–1092

    PubMed  Google Scholar 

  • Pinto IC, Cerqueira-Coutinho CS, Santos EP, Carmo FA, Ricci-Junior E (2017) Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev Ind Pharm 43(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Pohlit AM, Lopes NP, Gama RA, Tadei WP, De Andrade Neto VF (2011) Patent literature on mosquito repellent inventions which contain plant essential oils – a review. Planta Med 77:598–617

    Article  CAS  PubMed  Google Scholar 

  • Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, West PA, Kleinschmidt I, Kisinza W, Mosha FW, Rowland M (2013) High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in North-Western Tanzania. Malar J 12:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Puglia C, Bonina F, Castelli F, Micieli D, Sarpietro MG (2009) Evaluation of percutaneous absorption of the repellent diethyltoluamide and the sunscreen ethylhexyl p-methoxycinnamate-loaded solid lipid nanoparticles: an in-vitro study. J Pharm Pharmacol 61(8):1013–1019

    CAS  PubMed  Google Scholar 

  • Rakkiyappan C, Singh RP, Bhattacharya A (2012) Study on encapsulation of diethyl phenyl acetamide in calcium-alginate microsphere for enhanced repellent efficacy. Int J Polym Mater 61:1154–1163

    Article  CAS  Google Scholar 

  • Rao SS, Kaveeshwar U, Purkayastha SS (1993) Acute oral toxicity of insect repellent N,N-diethylphenylacetamide in mice, rats, and rabbits and protective effect of sodium pentobarbital. Indian J Exp Biol 31(9):755–760

    CAS  PubMed  Google Scholar 

  • Rao SS, Vijayaraghavan R, Suryanarayana MVS, Ramachandran PK (1989) Gas chromatographic identification of urinary metabolites of insect repellent N,N-diethylphenylacetamide on inhalation exposure in rats. J Chromatogr 493:210–216

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Boyle SM (2015) Methods for assessing repellant quality of organic materials and methods and compositions for repelling arthropods. US Patent; US20150126437A1

    Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    Article  CAS  PubMed  Google Scholar 

  • Romi R, Lo Nostro P, Bocci E, Ridi F, Baglioni P (2005) Bioengineering of a cellulosic fabric for insecticide delivery via grafted cyclodextrin. Biotechnol Prog 21:1724–1730

    Article  CAS  PubMed  Google Scholar 

  • Rudin W (2005) Schutz vor insekten. Ther Umschau 62:713–718

    Article  CAS  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  CAS  PubMed  Google Scholar 

  • Schleier JJ III, Peterson RKD (2012) The joint toxicity of type I, II, and nonester pyrethroid insecticides. J Econ Entomol 105(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N (2012) Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem 72:339–355

    Article  CAS  Google Scholar 

  • Stanczyk NM, Behrens RH, Chen-Hussey V, Stewart SA, Logan JG (2015) Mosquito repellents for travellers. BMJ 350:h99

    Article  PubMed  Google Scholar 

  • Stanczyk NM, Brookfield JFY, Ignell R, Logan JG, Field LM (2010) Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc Natl Acad Sci U S A 107:8575–8580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strickman D (2007) Older synthetic active ingredients and current additives. In: Debboun M, Frances S, Strickman D (eds) Insect repellents: principles, methods, and uses. CRC Press, Boca Raton, pp 361–383

    Google Scholar 

  • Suh E, Bohbot JD, Zwiebel LJ (2014) Peripheral olfactory signaling in insects. Curr Opin Insect Sci 6:86–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7(2):210–237

    CAS  PubMed  Google Scholar 

  • Swale DR, Sun B, Tong F, Bloomquist JR (2014) Neurotoxicity and mode of action of N,N-diethyl-Meta-toluamide (DEET). PLoS One 9(8):e103713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syed Z, Leal WS (2007) Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus. Chem Senses 32:727–738

    Article  CAS  PubMed  Google Scholar 

  • Takken W, Knols BGJ (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44:131–157

    Article  CAS  PubMed  Google Scholar 

  • Tauxe GM, Macwilliam D, Boyle SM, Guda T, Ray A (2013) Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tentschert J, Bestmann HJ, Holldobler B, Heinze J (2000) 2,3-Dimethyl-5-(2-methylpropyl)pyrazine, a trail pheromone component of Eutetramorium mocquerysi Emery (1899) (Hymenoptera: Formicidae). Naturwissenschaften 87:377–380

    Article  CAS  PubMed  Google Scholar 

  • Tikar SN, Yadav R, Mendki MJ, Rao AN, Sukumaran D, Parashar BD (2014) Oviposition deterrent activity of three mosquito repellents diethyl phenylacetamide (DEPA), diethyl m-toluamide (DEET), and diethyl benzamide (DEB) on Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Parasitol Res 113:101–106

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan R, Rao SS, Suryanarayana MVS, Swamy RV (1991) Acute and subacute inhalation toxicity studies of a new broad spectrum insect repellent N,N-diethylphenylacetamide. Toxicology 67:85–96

    Article  CAS  PubMed  Google Scholar 

  • Wang GR, Carey AF, Carlson JR, Zwiebel LJ (2010) Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 107:4418–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C (2007) Jasmonates an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster B, Cardé RT (2017) Use of habitat odour by host-seeking insects. Biol Rev 92(2):1241–1249

    Article  PubMed  Google Scholar 

  • WHO (2002) Scaling-up insecticide-treated netting programmes in Africa. WHO/CDS/RBM/2002.43

    Google Scholar 

  • WHO (2005) WHO Statement on the First Meeting of International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal Malformations. http://who.int/mediacentre/news/statements/2016/1st-emergencycommittee-zika/en/. Accessed 9 Apr 2016

  • Wilke ABB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasites Vectors 8:342

    Article  PubMed  PubMed Central  Google Scholar 

  • Withey JM, Bajic A (2015) Operationally simple synthesis of N,N-Diethyl-3-methylbenzamide (DEET) using COMU as a coupling reagent. J Chem Educ 92:175–178

    Article  CAS  Google Scholar 

  • Wright RH, Chambers DL, Keiser I (1971) Insect attractants, anti-attractants and repellents. Can Entomol 103:627–630

    Article  CAS  Google Scholar 

  • Xu P, Choo YM, De La Rosa A, Leal WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci U S A 111(46):16592–16597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue RD, Ali A, Barnard DR (2003) Laboratory evaluation of toxicity of 16 insect repellents in aerosol sprays to adult mosquitoes. J Am Mosq Control Assoc 19(3):271–274

    CAS  PubMed  Google Scholar 

  • Yang Y, Ma H, Zhou J, Liu J, Liu W (2014) Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 96:146–154

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singhamahapatra, A., Sahoo, L., Sahoo, S. (2020). Mosquito Repellent: A Novel Approach for Human Protection. In: Barik, T.K. (eds) Molecular Identification of Mosquito Vectors and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-9456-4_8

Download citation

Publish with us

Policies and ethics