Skip to main content

Mössbauer Spectroscopic Studies on Atomic Diffusion in Materials

  • Chapter
  • First Online:
Modern Mössbauer Spectroscopy

Part of the book series: Topics in Applied Physics ((TAP,volume 137))

Abstract

Atomic jumps within the lifetime of a Mössbauer nuclear probe are known to cause a line broadening, which is directly connected to the diffusivity, as predicted theoretically by Singwi and Sjölander in 1960. Many research groups applied and further extended their theory for the studies of elementary jump processes of Fe atoms in single crystals: They analyzed Mössbauer spectrum in terms of line broadening and motional averaging as functions of temperature as well as crystal orientation. To observe such dynamical behaviours, we developed specially designed experimental set-ups such as a high-temperature Mössbauer furnace for laboratory, in-beam and on-line Mössbauer set-ups for accelerator facilities. First of all, we will introduce such measuring techniques suitable for homogeneous materials, explaining their unique features in this chapter. Secondary, we present an imaging technique in Mössbauer spectroscopy which is opening a new possibility to study diffusion processes with a diffusion-length from μm to mm after diffusion annealing at high temperature. This original method enables us to measure the diffusion profiles separately for the different spectral components in the material containing a complex microstructure. As examples, we will explain the studies on Fe diffusion in single and multi-crystalline Si materials using “Mössbauer spectroscopic microscope (MSM),” which enables us to measure the diffusion profiles separately for different chemical states with a spatial resolution of several micrometres. This new method provides a possibility to investigate a diffusion process by considering of the interactions and the correlations between Fe impurities and lattice defects such as dislocations, grain boundaries, and residual stresses in different grains of materials. Finally, we apply this technique to investigate carbon diffusion and segregation processes in Fe-steel, and the mapping images at different temperatures are obtained separately for the spectral components that originated from carbon impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.L. Mössbauer, Fluorescent nuclear resonance of γ-radiation in Iridium-191. Z. Physik 151, 124–143 (1958); R.L. Mössbauer, Kernresonanz-absorption von gammastrahlung in Ir191. Naturwissenschaften 45, 538–539 (1958); R.L. Mössbauer, Recoiless nuclear resonance absorption of γ-radiation. Science 137, 731–738 (1962); R.L. Mössbauer, The discovery of the Mössbauer effect. Hyperfine Interact. 126, 1–12 (2000)

    Google Scholar 

  2. V.I. Goldanskii, R. Herber (eds.), Chemical Applications of Mössbauer Spectroscopy (Academic Press, New York, 1968)

    Google Scholar 

  3. N.N. Greenwood, T.C. Gibb, Mössbauer Spectroscopy (Chapman and Hall, London, 1971)

    Book  Google Scholar 

  4. U. Gonser (ed.), Mössbauer Spectroscopy, in Topics in Applied Physics, vol. 5 (Springer, Berlin, 1975)

    Google Scholar 

  5. P. Gütlich, R. Link, A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry. Inorganic Chemistry Concepts Series, vol. 3, 1st ed. (Springer, Berlin, 1978)

    Google Scholar 

  6. G.J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Modern Inorganic Chemistry Series, vol. 1. (Plenum, New York, 1984)

    Google Scholar 

  7. G.J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Modern Inorganic Chemistry Series, vol. 2. (Plenum, New York, 1989)

    Google Scholar 

  8. G.J. Long, F. Grandjean (eds.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Modern Inorganic Chemistry Series, vol. 3. (Plenum, New York, 1989)

    Google Scholar 

  9. G.J. Long, F. Grandjean (eds.), Mössbauer Spectroscopy Applied to Magnetism and Materials Science, vol. 1. (Plenum, New York, 1993)

    Google Scholar 

  10. G.J. Long, F. Grandjean, (eds.), Mössbauer Spectroscopy Applied to Magnetism and Materials Science, vol. 2. (Plenum, 1996)

    Google Scholar 

  11. P. Gütlich, E. Bill, A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry (Springer, Berlin, 2011)

    Google Scholar 

  12. Y. Yoshida, G. Langouche (eds.), Mössbauer Spectroscopy-Tutorial Book (Springer, Berlin, 2012)

    Google Scholar 

  13. Y. Yoshida, G. Langouche (eds.), Defects and Impurities in Silicon Materials: An Introduction to atomic-level Silicon Defect Engineering (Springer, Berlin, 2015)

    Google Scholar 

  14. Y. Yoshida, K. Mibu (eds.), Proceedings of the 65th Yamada Conference and the 31st International Conference on the Applications of the Mössbauer Effect (ICAME2011, Kobe), 25–30 September 2011, (Springer, New York, London, 2011)

    Google Scholar 

  15. A.E. Fick, Annalen der Physik und Chemie, 94, 59 (1855); Phil. Mag. 10, 30 (1855)

    Google Scholar 

  16. J. Groh, G. von Hevesy, Annalen der Physik 63, 85 (1920); Annalen der Physik 65, 216 (1921)

    Google Scholar 

  17. A. Einstein, Annalen der Physik, 17, 549 (1905); Annalen der Physik, 19, 371 (1906)

    Google Scholar 

  18. M. van Smoluchowski, Ann. Phys. 21, 756 (1906)

    Article  Google Scholar 

  19. P.G. Shewmon, Diffusion in Solids, McGraw-Hill Book Company, New York/San Francisco/Tronto/London, (Springer, Berlin, 1963)

    Google Scholar 

  20. J. Philibert, Atom movements: Diffusion and mass transport in solids, Les Editions de Physique (1991)

    Google Scholar 

  21. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2007)

    Google Scholar 

  22. H. Mehrer (Vol. ed.), Diffusion in Solid Metals and Alloys, Landort-Bornstein, New Series, Group III, vol. 26, (Springer, Berlin, 1990)

    Google Scholar 

  23. D.L. Beke (Vol. Ed.), Diffusion in Semiconductors and Non-Metallic Solids, Sub-volume A, Diffusion in Semiconductors, Landort-Bornstein, New Series, Group III, Vol.33 (Springer, Berlin, 1998)

    Google Scholar 

  24. D.L. Beke (Vol. Ed.), Diffusion in Semiconductors and Non-Metallic Solids, Sub-volume B1, Diffusion in Nonmetallic Solids (part 1), Landort-Bornstein, New Series, Group III, vol. 33, (Springer, Berlin, 1999)

    Google Scholar 

  25. S. Margulies, J.R. Ehrman, Nucl. Instr. Methods 12, 131 (1961)

    Article  Google Scholar 

  26. K.S. Singwi, A. Sjölander, Phys. Rev. 120, 1093 (1960)

    Article  ADS  Google Scholar 

  27. C.T. Chudley, R.J. Elliot, Proc. Phys. Soc. (London) 77, 353 (1961)

    Article  ADS  Google Scholar 

  28. M.C. Dibar-Ure, P.A. Flinn, Appl. Phys. Lett. 23, 587 (1973)

    Article  ADS  Google Scholar 

  29. Ch. Janot, J. De Physique 37, 253 (1976)

    Article  Google Scholar 

  30. D. Wolf, Appl. Phys. Lett., 30, 617, (1977); Phil. Mag. A, 47, 147, (1983).

    Google Scholar 

  31. J.G. Mullen, Phys. Lett. 79A, 457, (1980); in Proceeding of ICAME1981 (Jaipur, 29, 1982)

    Google Scholar 

  32. S. Mantl, W. Petry, K. Schroeder, G. Vogl, Phys. Rev. 27, 5313 (1983)

    Article  ADS  Google Scholar 

  33. K.H. Steinmetz, G. Vogl, W. Petry, K. Schroeder, Phys. Rev. B 34, 107 (1986)

    Article  ADS  Google Scholar 

  34. I. Nowik, S.G. Cohen, E.R. Bauminger, S. Ofer, Phys. Rev. Lett, 50, 152, (1983); E.R. Bauminger, I. Nowik, p. 219, (1986), in Mössbauer Spectroscopy, eds. by D.P.E. Dickson, F.J. Berry, (Cambridge University Press)

    Google Scholar 

  35. S. Dattagupta, in Mössbauer Spectroscopy, eds.by D.P.E. Dickson, F.J. Berry (Cambridge University Press, 1986), p. 198

    Google Scholar 

  36. A. Seeger, H. Mehrer, in Vacancies and Interstitials in Metals, eds. by A. Seeger, D. Schumacher, W. Schilling, J. Diehl (North-Holland Publishing Co., Amsterdam, 1970). p. 1

    Google Scholar 

  37. W. Schilling, P. Erhart, K. Sonnenberg, Interpretation of Defect Reactions in Irradiated Metals by One Interstitial Model in Fundamental Aspects of Radiation Damages in Metals, eds. by M. T. Robinson and F. W. Young, jr., U.S.E.R.D.A.Conf. 751006, (1976), p. 470.

    Google Scholar 

  38. S. Nasu, Y. Yoshida, F.E. Fujita, in Proceeding of ICAME1981, (Jaipur, 1982), p. 212

    Google Scholar 

  39. Y. Yoshida, S. Nasu, F.E. Fujita, 57Fe Mössbauer Study on Point Defects in Pure Iron, in Proceeding of International Conference of Yamada Conference V (1982), pp. 199-202; Y. Yoshida, S. Nasu, F.E. Fujita, Y. Maeda, H. Yoshida, J. Magn. Magn. Mater. 34-35, 753 (1983); Y. Yoshida, Doctor thesis, Mössbauer Effect Study of Point Defects in Pure Iron, (Osaka University, Graduate school of engineering science, Department of Material Science, Toyonaka, Osaka, 1983)

    Google Scholar 

  40. M. Kiritani, H. Takata, K. Moriyama, F.E. Fujita, Mobility of lattice vacancies in iron. Phil. Mag. 40, 779–802 (1979); M. Kiritani, Nature of point defects and their interactions revealed by electron-microscope observation of their clusters, in Proceeding of International Conference of Yamada Conference V, (1982), pp. 59–66

    Google Scholar 

  41. P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Multiscale modelling of crowdion and vacancy defects in body-centred-cubic transition metals. Phys. Rev. B 76, 054107 (2007)

    Article  ADS  Google Scholar 

  42. A. Heiming, K.H. Steinmetz, G. Vogl, Y. Yoshida, Mössbauer studies on self-diffusion in pure iron. J. Phys. F: Metal Phys. 18, 1491 (1988)

    Article  ADS  Google Scholar 

  43. Y. Yoshida, W. Miekeley, W. Petry, W. Stehr, K.H. Steinmetz, G. Vogl, Anomalously fast diffusion of Fe in -Zr-Fe Alloys, A Mössbauer study. Mat. Sci. Forum 15–18, 487–492 (1987)

    Article  Google Scholar 

  44. Y. Yoshida, P. Fratzl, W. Miekeley, G. Vogl, Anomalously fast diffusion of Fe in Zr-Nb alloys. Defect Diffus Forum 66–69, 353 (1990)

    Google Scholar 

  45. Y. Yoshida, M. Sugimoto, D. Tuppinger, G. Vogl, Search for anomalously fast diffusion of Fe in -Ti and -Zr with Mössbauer spectroscopy. Defect Diffus Forum 66–69, 347 (1990)

    Google Scholar 

  46. Y. Yoshida, Y. Masuda, H. Häßlein, F.E. Fujita, H. Nakajima, High temperature Mössbauer study on the fast diffusion of Fe in -TiFe alloys. Defect Diffus Forum 143–147, 461–466 (1996)

    Google Scholar 

  47. Y. Yoshida, P. Fratzl, F. Langmayr, G. Vogl, Short-range-order in Au-Fe alloys studied by high-temperature Mössbauer spectroscopy. Phys. Rev. B 39, 6395 (1989)

    Article  ADS  Google Scholar 

  48. P. Fratzl, Y. Yoshida, F. Langmayr, G. Vogl, Defect-mediated nucleation of α-Fe in Au-Fe alloy. Phys. Rev. B 44, 4192–4199 (1991)

    Article  ADS  Google Scholar 

  49. P. Fratzl, Y. Yoshida, G. Vogl, H.G. Haubold, Phase-separation kinetics of dilute Cu-Fe alloys studied by anomalous small-angle X-ray scattering and Mössbauer spectroscopy. Phys. Rev. B 46, 11323–11331 (1992)

    Article  ADS  Google Scholar 

  50. Y. Yoshida, P. Fratzl, G. Vogl, H. Hofer, F. Dworschak, Radiation-induced Segregation in Proton-irradiated AuFe Studied by Mössbauer Spectroscopy. J. Phys. Condens. Mat. 4, 2415–2428 (1992)

    Google Scholar 

  51. Y. Yoshida, F. Shimura, In-Situ Observation of Diffusion and Segregation of Fe atoms in Si Crystals at High Temperature by Mössbauer spectroscopy, in Electrochemical Society Proceedings, vol. 98–1, (1998), pp. 984–996, (The 8th International Symposium on Silicon Materials Science and Technology, San Diego May 1998).

    Google Scholar 

  52. Y. Yoshida, S. Ogawa, K. Arikawa, Direct observation of substitutional Fe Atoms in Si and SOI wafers at 1273 K. Phys. B 340–342, 605–608 (2003)

    Article  ADS  Google Scholar 

  53. Y. Yoshida, S. Horie, K. Niira, K. Fukui, K. Shirasawa, In-situ observation of iron atoms in multi-crystalline silicon at 1273 K and 300 K by Mössbauer spectroscopy. Phys. B 376–377, 227–230 (2006)

    Article  ADS  Google Scholar 

  54. Y. Yoshida, S. Aoki, K. Sakata, Y. Suzuki, M. Adachi, K. Suzuki, Iron impurities in multi-crystalline silicon studied by Mössbauer spectroscopy. Phys. B 401–402, 119–122 (2007)

    Article  ADS  Google Scholar 

  55. M. Menningen, R. Sielemann, G. Vogl, Y. Yoshida, K. Bonde-Nielsen, G. Weyer, Interstitial Implantation of Iron into aluminum. Europhy. Lett. 3, 3–8 (1987)

    Article  Google Scholar 

  56. Y. Yoshida, M. Menningen, R. Sielemann, G. Vogl, G. Weyer, K. Schroeder, Local atomic jump process of iron in -Zirconium. Phys. Rev. Lett. 61, 195–198 (1988)

    Article  ADS  Google Scholar 

  57. Y. Yoshida, In-Beam Mössbauer study of atomic jump processes in metals. Hyperfine Interact. 47, 95–113 (1989)

    Article  ADS  Google Scholar 

  58. P. Schwalbach, S. Laubach, M. Hartick, E. Kankeleit, B. Keck, M. Menningen, R. Sielemann, Diffusion and Isomer shift of Interstitial Iron in Silicon observed via in-beam Mössbauer Spectroscopy. Phys. Rev. Lett. 64, 1274 (1990)

    Article  ADS  Google Scholar 

  59. R. Sielemann, Y. Yoshida, In-beam Mössbauer spectroscopy at heavy-ion accelerators. Hyperfine Interact. 68, 119–130 (1991)

    Article  ADS  Google Scholar 

  60. B. Keck, R. Sielemann, Y. Yoshida, Iron on substitutional and interstitial lattice sites in alkali metals and isomer shift systematics for interstitial iron in elemental metals. Phys. Rev. Lett. 71, 4178–4181 (1993)

    Article  ADS  Google Scholar 

  61. J. Kapoor, D. Riegel, Y. Li, C. Polaczyk, J. Andres, F. Mezei, R. Sielemann, Y. Yoshida, W.D. Brewer, L. A. de Mello, S. Frota-Pessoa, Observation of Magnetism of Fe at an Interstitial Site in a Metal Host. Phys. Rev. Lett., 78, 1279–1282 (1997)

    Google Scholar 

  62. Y. Yoshida, D. Tuppinger, G. Vogl, B. Keck, R. Sielemann, In-beam Mössbauer Spectroscopy on pure iron, in HMI-Bericht Berlin, vol. 490, eds. by J. Eichler, W. Von Oertzen, H. Lindenberger, H. Homeyer, R. Michaelsen (1991), pp. 112–113

    Google Scholar 

  63. Y. Yoshida, Y. Kobayashi, K. Hayakawa, K. Yukihira, J. Nakamura, S. Nasu, E. Yagi, F. Ambe, In-beam Mössbauer study on 57Fe jumps in solid Ar and Solid Xe after coulomb-excitation and recoil-implantation. RIKEN Rev. 16, 19–20 (1997)

    Google Scholar 

  64. Y. Yoshida, Mössbauer spectroscopy to investigate atomistic jump processes on an atomistic scale. Hyperfine Interact 113, 183–198 (1998)

    Article  ADS  Google Scholar 

  65. R. Sielemann, Y. Kobayashi, Y. Yoshida, H.P. Gunnlaugsson, G. Weyer, Magnetism at single isolated iron atoms implanted in graphite. Phys. Rev. Lett. 101, 137206 (2008)

    Article  ADS  Google Scholar 

  66. G. Vogl, W. Mansel, P.H. Dederichs, Plys. Rev. Lett. 36, 1497 (1976)

    Article  ADS  Google Scholar 

  67. W. Petry, G. Vogl, W. Mansel, Phys. Rev. Lett. 45, 1862 (1980)

    Article  ADS  Google Scholar 

  68. H.J. Blythe, H. Kronmuller, A. Seeger, F. Walz, Phys. Stat. Sol. (a) 181, 233, (2000)

    Google Scholar 

  69. J. Christiansen, E. Recknagel, G. Weyer, Phys. Rev. Lett. 20, 46 (1966)

    Article  Google Scholar 

  70. Y. Yoshida, Y. Kobayashi, F. Ambe, E. Yagi, A. Seeger et al., Direct observation of self-interstitial motion in pure iron by 56Fe (d, p)57Fe In-beam mössbauer spectroscopy. Defect Diffus Forum 194–199, 29–34 (2001)

    Article  Google Scholar 

  71. A.A. Istratov, H. Hieslmair, E.R Weber, Iron and its complexes in silicon. Appl. Phys. A 69 (1999) 13–44; A.A. Istratov, H. Hieslmair, E.R Weber, Iron contamination in silicon technology Appl. Phys. A 70, 489–534 (2000)

    Google Scholar 

  72. Y. Yoshida, Direct Observation of Substitutional and Interstitial Fe atoms in Si by high-temperature and In-beam Mössbauer Spectroscopy, ALTECH 2003, ECS, (Salt Lake City, US, 479–482, 2003)

    Google Scholar 

  73. Y. Yoshida, Y. Kobayashi, K. Hayakawa, K. Yukihira, F. Shimura, A. Yoshida, X. Diao, H. Ogawa, Y. Yano, F. Ambe, In-beam Mössbauer study on interstitial and substitutional 57Mn/57Fe jumps in Si. Defect Diffus Forum 194–199, 611–616 (2001)

    Article  Google Scholar 

  74. Y. Yoshida, Y. Kobayashi, A. Yoshida, X. Diao, S. Ogawa, K. Hayakawa, K. Yukihira, F. Shimura, F. Ambe, In-Beam Mössbauer spectroscopy after GeV-ion implantation at an on-line projectile-fragments separator. Hyperfine Interact 141–142, 157–162 (2002)

    Article  ADS  Google Scholar 

  75. Y. Yoshida, Y. Kobayashi, K. Hayakawa, K. Yukihira, A. Yoshida, H. Ueno, F. Shimura, F. Ambe, In-situ observation of substitutional and interstitial Fe atoms in Si after GeV-implantation: an in-beam Mössbauer study. Phys. B 376–377, 69–72 (2006)

    Article  ADS  Google Scholar 

  76. Y. Yoshida, Y. Kobayashi, K. Yukihira, K. Hayakawa, K. Suzuki, A. Yoshida, H. Ueno, A. Yoshimi, K. Shimada, D. Nagae, K. Asahi, G. Langouche, 57Fe diffusion in n-type Si after GeV-implantation of 57Mn. Phys. B 401–402, 101–104 (2007)

    Article  ADS  Google Scholar 

  77. Y. Yoshida, K. Suzuki, Y. Kobayashi, T. Nagatomo, Y. Akiyama, K. Yukihira, K. Hayakawa, H. Ueno, A. Yoshimi, D. Nagae, K. Asahi, G. Langouche, 57Fe charge state in mc-Si solar cells under light illumination After GeV- implantation of 57Mn. Hyperfine Interact 204, 133–137 (2012)

    Article  ADS  Google Scholar 

  78. K. Suzuki, Y. Yoshida, K. Hayakawa, K. Yukihira, M. Ichino, K. Asahi, Observation of iron impurities diffusion in silicon under bending stress by Mössbauer spectroscopy. Hyperfine Interact 197, 213–217 (2010)

    Article  ADS  Google Scholar 

  79. M. Ichino, Y. Yoshida, In-situ observation of iron impurities in n-type silicon under UV light illumination by Mössbauer spectroscopy. in Proceeding of The Forum on the Science and Technology of Silicon Materials, vol. 357 (2010)

    Google Scholar 

  80. K. Tanaka, Y. Akiyama, K. Hayakawa, K. Yukihira, Y. Yoshida, Mapping analyses of Fe-diffused mc-Si using Mössbauer microscope and photoluminescence. Hyperfine Interact 206, 75–78 (2012)

    Article  ADS  Google Scholar 

  81. K. Tanaka, T. Watanabe, T. Uenoyama, Y. Ino, Y. Yoshida, Search for Fe-B pairs in highly B-doped Si wafers by Mössbauer spectroscopy. in Proceedings of Si-Forum 2014, Hamamatsu, (2014), pp. 107–111

    Google Scholar 

  82. Y. Yoshida, Y. Tsukamoto, M. Ichino, K. Tanaka, Direct observation of carrier trapping processes on Fe impurities in mc-si solar cell. Solid State Phenom. 205–206, 40–46 (2014)

    Google Scholar 

  83. Y. Yoshida, K. Suzuki, K. Hayakawa, K. Yukihira, H. Soejima, Mössbauer spectroscopic microscope. Hyperfine Interact. 188, 121–126 (2009)

    Article  ADS  Google Scholar 

  84. Y. Yoshida, K. Hayakawa, K. Yukihira, M. Ichino, Y. Akiyama, H. Kumabe, H. Soejima, Development and applications of “Mössbauer cameras.” Hyperfine Interact. 198, 23–29 (2010)

    Article  ADS  Google Scholar 

  85. K. Hayakawa, Y. Tsukamoto, Y. Akiyama, M. Kurata, K. Yukihira, H. Soejima, Y. Yoshida, Deployment of system and technology for Mössbauer spectroscopic microscope. Hyperfine Interact 206, 79–82 (2012)

    Article  ADS  Google Scholar 

  86. Y. Ino, H. Soejima, K. Hayakawa, K. Yukihira, K. Tanaka, H. Fujita, T. Watanabe, K. Ogai, K. Moriguchi, Y. Harada, Y. Yoshida, 3D-Mössbauer spectroscopic microscope for mc-Si solar cell evaluation. Hyperfine Interact. 237, 13 (2016)

    Article  ADS  Google Scholar 

  87. Y. Yoshida, Y. Ino, K. Matsumuro, T. Watanabe, H. Fujita, K. Hayakawa, K. Yukihira, K. Ogai, K. Moriguchi, Y. Harada, H. Soejima, Feasibility study to investigate the diffusion of Fe in Si using a Mössbauer spectroscopic microscope. Hyperfine Interact. 237, 130 (2016)

    Article  ADS  Google Scholar 

  88. Y. Ino, T. Watanabe, K. Hayakawa, K. Yukihira, K. Matsumuro, H. Fujita, K. Ogai, K. Moriguchi, Y. Harada, H., Soejima, Y. Yoshida, A new set-up of Mössbauer spectroscopic microscope to study the correlation between Fe impurities and lattice defects in Si crystals. J. Cryst Growth. https://doi.org/10.1016/j.jcrysgro.2016.12.109

  89. Y. Ino, H. Soejima, K. Hayakawa, K. Yukihira, K. Tanaka, H. Fujita, T. Watanabe, K. Ogai, K. Moriguchi, Y. Harada, and Y. Yoshida, 3D-mössbauer spectroscopic microscope for mc-Si solar cell evaluation. Hyperfine Interactions. 237, 13 (2016).

    Google Scholar 

  90. Y. Yoshida, T. Watanabe, Y. Ino, M. Kobayashi, I. Takahashi, N. Usami, Mössbauer spectroscopic microscopy study on diffusion and segregation of Fe impurities in mc-si wafer. Hyperfine Interact. 240, 114–121 (2019)

    Article  ADS  Google Scholar 

  91. G. Langouche, Y. Yoshida, Ion Implantation, in Mössbauer Spectroscopy-Tutorial Book, eds. by Y. Yoshida, G. Langouche (Springer, 2013). https://doi.org/10.1007/978-3-642-32220-4

  92. G. Langouche, Y. Yoshida, Nuclear Methods to study defects and impurities in Si materials. 10.1007/978-4-431-55800-2, pp. 373, Chapter 8, in Defects and Impurities in Silicon Materials- An Introduction to Atomic-Level Silicon Engineering, eds. by Y. Yoshida, G. Langouche (eds.), in Lecture Note in Physics, (Springer, Berlin, 2016)

    Google Scholar 

  93. H.P. Gunnlaugsson, G. Weyer, M. Dietrich, M. Fanciulli, K. Bharuth-Ram, R. Sielemann, ISOLDE collaboration. Appl. Phys. Lett. 80, 2657–2659 (2002)

    Google Scholar 

  94. J. Kübler, A.E. Kumm, H. Overhof, P. Schwalbach, M. Hartick, E. Kankeleit, B. Keck, L. Wende, R. Sielemann, Isomer-shift of interstitial and substitutional iron in silicon and germanium. Z. Phys. B 92, 155–162 (1993)

    Article  ADS  Google Scholar 

  95. E. Wright, J. Coutinho, S. Oberg, V.J.B. Torres, J. Appl. Phys. 119, 181509 (2016). https://doi.org/10.1063/1.14948243

    Article  ADS  Google Scholar 

  96. Y. Ino, K. Hayakawa, K. Yukihira, K. Moriguchi, K. Ogai, K. Shirasawa, H. Takato, Y. Yoshida, Iron contamination near surface of silicon solar cells observed by Mössbauer spectroscopic microscope, under preparation for publication, (2020)

    Google Scholar 

  97. M. Kobayashi, Y. Yoshida, in Abstract book for The 9th TOYOTA RIKEN International Workshop on New Developments and Prospects for the Future of Mössbauer Spectroscopy (IWMS2018)

    Google Scholar 

  98. N. Maruyama, H. Fujita, M. Kobayashi, Y. Yoshida, H. Kubo, Mössbauer and atom probe tomography characterization of low and medium carbon martensitic steels, in Abstract book for The 9th TOYOTA RIKEN International Workshop on New Developments and Prospects for the Future of Mössbauer Spectroscopy (IWMS2018)

    Google Scholar 

  99. K. Tanaka, Y. Tsukamoto, K. Hayakawa, Y. Yoshida, Characterization of 57Fe-Enriched BiFeO3 thin films by mössbauer spectroscopy. Jpn. J. Appl. Phys. 51, (2012)

    Google Scholar 

  100. K. Tanaka, Y. Tsukamoto, S. Okamura, Y. Yoshida, Observation of 57Fe-Enriched BiFeO3 thin films by Mössbauer spectroscopic microscope. Jpn. J. Appl. Phys. 52, 09KB02 (2013)

    Google Scholar 

  101. K. Tanaka, Y. Tsukamoto, S. Okamura, Y. Yoshida, Mössbauer spectra of 57Fe-Enriched BiFeO3 thin films fabricated on SiO2/Si substrates by chemical solution deposition process. Key Eng. Mater. 582, 63–66 (2014)

    Google Scholar 

  102. K. Tanaka, Y. Fujita, S. Okamura, Y. Yoshida, Mössbauer spectra and electric properties of 57Fe-enriched BiFeO3 Thin Films. Jpn. J. Appl. Phys. 53 (2014)

    Google Scholar 

Download references

Acknowledgements

I am entirely indebted to my mentors, Emeritus Profs. F. E. Fujita and S. Nasu, Osaka University, for their creative ideas and kind support to the point defect studies. I thank Emeritus Profs. Y. Maeda and H. Yoshida, KUR Kyoto University, for their warm support to low-temperature irradiation works. Since 1983, I had a lot of exciting opportunities to join the international joint ventures. I sincerely appreciate to Emeritus Prof. G. Vogl, who invited me to Hahn Meitner Institute Berlin and Universität Wien and gave me the best period to perform the Mössbauer diffusion studies by developing Accelerator Spectroscopy. I worked with excellent scientists and acknowledged the collaborations with Dr R. Sielemann HMI, Prof. P. Fratzl MPI of Colloids and Interfaces, Emeritus Prof. A. Seeger MPI Stuttgart, Emeritus Prof. G. Langouche Uni. Leuven, and Dr Y. Kobayashi RIKEN. For JST project for MSM development, I appreciate Dr Y. Ino, Dr K. Tanaka, Mr K. Hayakawa, and Mr K. Yukihira, and many students in my laboratory for intensive supports. Finally, I am deeply appreciated to warm help from Emeritus Profs. G. Langouche, Uni. Leuven and N. Kojima Tokyo univ., for organizing international conferences such as ICAME2011 Kobe and IWMS2018 Nagoya.

The project for developing Mössbauer Spectroscopic Microscopy (MSM) was supported by the “Development of Systems and Technologies for Advanced Measurement and Analysis” Program of Japan Science and Technology Agency (JST). I acknowledge intensive technical supports from APCO Ltd and Hamamatsu Photonics K.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshida, Y. (2021). Mössbauer Spectroscopic Studies on Atomic Diffusion in Materials. In: Yoshida, Y., Langouche, G. (eds) Modern Mössbauer Spectroscopy. Topics in Applied Physics, vol 137. Springer, Singapore. https://doi.org/10.1007/978-981-15-9422-9_9

Download citation

Publish with us

Policies and ethics