Skip to main content
Log in

In-beam Mössbauer study of atomic jump processes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Interstitial jump processes are studied using “in-beam Mössbauer technique” combining Coulomb excitation and recoil implantation. After implantation of Coulomb-excited57Fe into metals (α-Zr, Al, Nb and Au) at low temperature, a relatively large part of the implanted atoms ends up on interstitial positions yielding large quadrupole splittings. Inα-Zr, the interstitial line shows a clear quadrupole relaxation accompanied by a sharp decrease of the resonance intensity between 40 K and 100 K. This effect is interpreted as localized fast jumps of57Fe atoms in the octahedral cage of the hep Zr lattice. A preliminary result from a time-differential measurement onZr 57Fe is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Flinn, in:Applications of Mössbauer Spectroscopy, ed. R.L. Cohen, Vol. 2 (Academic Press, New York, 1980) p. 393.

    Google Scholar 

  2. S. Dattagupta, Hyp. Int. 11(1981)77.

    Article  Google Scholar 

  3. W. Petry and G. Vogl, Materials Science Forum 15–18(1987)323.

    Google Scholar 

  4. S. Mantl, W. Petry, K. Schröder and G. Vogl, Phys. Rev. B27(1983)5313.

    ADS  Google Scholar 

  5. K.H. Steinmetz, G. Vogl, W. Petry and K. Schröder, Phys. Rev. B34(1986)107.

    ADS  Google Scholar 

  6. A. Heiming, K.H. Steinmetz, G. Vogl and Y. Yoshida, J. Phys. F18(1988)149.

    Google Scholar 

  7. G. Vogl, W. Mansel and P.M. Dederichs, Phys. Rev. Lett. 31(1973)359.

    ADS  Google Scholar 

  8. A. BlÄsius, R.S. Preston and U. Gonser, Z. Phys. Chem. Neue Serie 115(1979)373.

    Google Scholar 

  9. W. Petry, G. Vogl and W. Mansel, Phys. Rev. Lett. 45(1980)1862.

    Article  ADS  Google Scholar 

  10. F.E. Wagner, F. Pröbst, R. Wordel and M. Zelger, in:Trends in Mössbauer Spectroscopy, Seeheim 1983, ed. P. Gütlich and G.M. Kalvius.

  11. G. Vogl, Phys. Stat. Sol. (b) 144(1987)259.

    Google Scholar 

  12. W.K. Warburton and D. Turnbull, in:Duffusion and Soloids, ed. A.S. Nowick and J.J. Burton (Academic Press, New York, 1975) p. 171.

    Google Scholar 

  13. C. Herzig, J. Neuhaus, K. Vieregge and L. Manke, Materials Science Forum 15–18(1987) 481.

    Google Scholar 

  14. G.M. Hood and R.J. Schultz, Phil. Mag. 26(1972)329.

    Google Scholar 

  15. H. Nakajima, G.M. Hood and R.J. Schultz, Phil. Mag. A (1988), in press.

  16. Y. Yoshida, W. Miekeley, W. Petry, R. Stehr, K.H. Steinmetz and G. Vogl, Materials Science Forum 15–18(1987)487.

    Google Scholar 

  17. Y. Yoshida, P. Fratzl and G. Vogl,Proc. Int. Conf. on Diffusion in Metals and Alloys, Balatonfüred, Hungary (1988).

  18. Y. Yoshida, M. Sugimoto, D. Tuppinger and G. Vogl,Proc. Int. Conf. on Diffusion in Metals and Alloys, Balatonfüred, Hungary (1988).

  19. G.D. Sprouse, G.M. Kalvius and S.S. Hanna, Phys. Rev. Lett. 12(1967)1041.

    ADS  Google Scholar 

  20. G.D. Sprouse and K.M. Kalvius, in:Mössbauer Effect Methodology, ed. I.J. Gruverman, Vol. 4 (Plenum Press, New York, 1968) p. 37.

    Google Scholar 

  21. M. Menningen, R. Sielemann, G. Vogl, Y. Yoshida, K. Bonde-Nielsen and G. Weyer, Europhys. Lett. 3(1987)927.

    ADS  Google Scholar 

  22. M. Menningen, R. Sielemann, G. Vogl, Y. Yoshida, K. Bonde-Nielsen and G. Weyer, Hyp. Int. 35(1987)807.

    Google Scholar 

  23. G. Weyer, in:Mössbauer Effect Methodology, ed. I.J. Gruverman, Vol. 10 (Plenum Press, New York, 1976) p. 301.

    Google Scholar 

  24. E. Verbiest and H. Pattyn, Phys. Rev. B8(1982)5097.

    ADS  Google Scholar 

  25. W. Mansel, H. Meyer and G. Vogl, Radiation Eff. 35(1978)69.

    Google Scholar 

  26. Y. Yoshida, M. Menningen, R. Sielemann, G. Vogl, G. Weyer and K. Schröder, Phys. Rev. Lett. 61(1988)195.

    Article  ADS  Google Scholar 

  27. S.M. Qaim, J. Phys. C2(1969)1434.

    ADS  Google Scholar 

  28. B.D. Sawicka, M. Drwiega, J. Sawicki and J. Stanek, Hyp. Int. 5(1978)147.

    Google Scholar 

  29. H.C. Verma, J. Chappert and N. Rao, Hyp. Int. 11(1981)45.

    Article  Google Scholar 

  30. F. Aubertin, U. Gonser, S.J. Campbell and H.G. Wagner, Z. Metallkde. 76(1985)237.

    Google Scholar 

  31. G. Wortmann and D.L. Williamson, Hyp. Int. 5(1975)167.

    Google Scholar 

  32. W. Petry and G. Vogl, Z. Phys. 45(1982)207.

    Google Scholar 

  33. W. Petry, G. Vogl and W. Mansel, Z. Phys. 46(1982)319.

    Article  Google Scholar 

  34. S. Dattagupta, Solid State Commun. 24(1977)19.

    Article  Google Scholar 

  35. F.J. Litterst, V.D. Gorobtschenko and G.M. Kalvius, Hyp. Int. 14(1983)21.

    Article  Google Scholar 

  36. J. Marangos, W. Mansel and D. Wahl, Materials Science Forum 15–18(1987)225.

    Google Scholar 

  37. J. Horvath, F. Dyment and H. Mehrer, J. Nucl. Mater. 126(1984)206.

    Article  Google Scholar 

  38. C. Herzig and U. Köhler, Materials Science Forum 15–18(1987)301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited talk given at the Third Seeheim Workshop on Mössbauer Spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, Y. In-beam Mössbauer study of atomic jump processes. Hyperfine Interact 47, 95–113 (1989). https://doi.org/10.1007/BF02351602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02351602

Keywords

Navigation