Skip to main content

Soft Tissue Tumour Pathology

  • Chapter
  • First Online:
Sarcoma
  • 648 Accesses

Abstract

The pathologist’s approach to a soft tissue tumour firstly involves understanding the clinical and radiological situation. Knowledge of such features, in conjunction with pathological assessment, allows for consideration of the likely differential diagnoses. Factors that are considered include the age of the patient [Table 7.1] and the size and location of the tumour [Table 7.2]. It is also useful to know which tissue layer the tumour has arisen within—if it is superficial, lies within the subcutaneous fat, is deep to the deep fascia or is located intramuscularly. It is also important to obtain the patient’s past medical history, as some tumours have associations or may be part of a syndrome. Neurofibromatosis-1 (NF-1), for example, is a genetic syndrome that is associated with development of neurofibromas and malignant peripheral nerve sheath tumours (MPNST) [1–3]. Familial adenomatous polyposis (FAP) is another syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, that is associated with intra-abdominal desmoid fibromatosis [4–6]. Desmoid fibromatosis is also associated with pregnancy and often occurs within the abdominal wall in this patient population [7–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bata BM, Hodge DO, Mohney BG. Neurofibromatosis type 1: a population-based study. J Pediatr Ophthalmol Strabismus. 2019;56(4):243–7.

    Article  PubMed  Google Scholar 

  2. Malbari F, Spira M, Knight PB, Zhu C, Roth M, Gill J, et al. Malignant peripheral nerve sheath tumors in neurofibromatosis: impact of family history. J Pediatr Hematol Oncol. 2018;40(6):e359–e63.

    Article  PubMed  Google Scholar 

  3. Higham CS, Dombi E, Rogiers A, Bhaumik S, Pans S, Connor SEJ, et al. The characteristics of 76 atypical neurofibromas as precursors to neurofibromatosis 1 associated malignant peripheral nerve sheath tumors. Neuro-Oncology. 2018;20(6):818–25.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marchis MLD, Tonelli F, Quaresmini D, Lovero D, Della-Morte D, Silvestris F, et al. Desmoid tumors in familial adenomatous polyposis. Anticancer Res. 2017;37(7):3357–66.

    Article  CAS  Google Scholar 

  5. Slowik V, Attard T, Dai H, Shah R, Septer S. Desmoid tumors complicating familial adenomatous polyposis: a meta-analysis mutation spectrum of affected individuals. BMC Gastroenterol. 2015;15:84.

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Houdt WJ, Wei IH, Kuk D, Qin LX, Jadeja B, Villano A, et al. Yield of colonoscopy in identification of newly diagnosed desmoid-type fibromatosis with underlying familial adenomatous polyposis. Ann Surg Oncol. 2019;26(3):765–71.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gansar GF, Markowitz IP, Cerise EJ. Thirty years of experience with desmoid tumors at Charity Hospital. Am Surg. 1987;53(6):318–9.

    CAS  PubMed  Google Scholar 

  8. Johner A, Tiwari P, Zetler P, Wiseman SM. Abdominal wall desmoid tumors associated with pregnancy: current concepts. Expert Rev Anticancer Ther. 2009;9(11):1675–82.

    Article  PubMed  Google Scholar 

  9. Fiore M, Coppola S, Cannell AJ, Colombo C, Bertagnolli MM, George S, et al. Desmoid-type fibromatosis and pregnancy: a multi-institutional analysis of recurrence and obstetric risk. Ann Surg. 2014;259(5):973–8.

    Article  PubMed  Google Scholar 

  10. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.

    Article  CAS  PubMed  Google Scholar 

  11. Folpe AL, Goldblum JR, Rubin BP, Shehata BM, Liu W, Dei Tos AP, et al. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29(8):1025–33.

    Article  PubMed  Google Scholar 

  12. Llombart-Bosch A, Machado I, Navarro S, Bertoni F, Bacchini P, Alberghini M, et al. Histological heterogeneity of Ewing’s sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support. Virchows Arch. 2009;455(5):397–411.

    Article  CAS  PubMed  Google Scholar 

  13. Doyle LA, Vivero M, Fletcher CD, Mertens F, Hornick JL. Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Mod Pathol. 2014;27(3):390–5.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida A, Tsuta K, Ohno M, Yoshida M, Narita Y, Kawai A, et al. STAT6 immunohistochemistry is helpful in the diagnosis of solitary fibrous tumors. Am J Surg Pathol. 2014;38(4):552–9.

    Article  PubMed  Google Scholar 

  15. Rangdaeng S, Truong LD. Comparative immunohistochemical staining for desmin and muscle-specific actin. A study of 576 cases. Am J Clin Pathol. 1991;96(1):32–45.

    Article  CAS  PubMed  Google Scholar 

  16. Wijnaendts LC, van der Linden JC, van Unnik AJ, Delemarre JF, Voute PA, Meijer CJ. The expression pattern of contractile and intermediate filament proteins in developing skeletal muscle and rhabdomyosarcoma of childhood: diagnostic and prognostic utility. J Pathol. 1994;174(4):283–92.

    Article  CAS  PubMed  Google Scholar 

  17. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35(10):e47–63.

    Article  PubMed  Google Scholar 

  18. Miettinen M, Fanburg-Smith JC, Virolainen M, Shmookler BM, Fetsch JF. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Hum Pathol. 1999;30(8):934–42.

    Article  CAS  PubMed  Google Scholar 

  19. Wrba F, Fertl H, Amann G, Tell E, Krepler R. Epithelial markers in synovial sarcoma. An immunohistochemical study on paraffin embedded tissues. Virchows Arch A Pathol Anat Histopathol. 1989;415(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ordonez NG, Mahfouz SM, Mackay B. Synovial sarcoma: an immunohistochemical and ultrastructural study. Hum Pathol. 1990;21(7):733–49.

    Article  CAS  PubMed  Google Scholar 

  21. Lopes JM, Bjerkehagen B, Holm R, Bruland O, Sobrinho-Simoes M, Nesland JM. Immunohistochemical profile of synovial sarcoma with emphasis on the epithelial-type differentiation. A study of 49 primary tumours, recurrences and metastases. Pathol Res Pract. 1994;190(2):168–77.

    Article  CAS  PubMed  Google Scholar 

  22. Folpe AL, Schmidt RA, Chapman D, Gown AM. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. Am J Surg Pathol. 1998;22(6):673–82.

    Article  CAS  PubMed  Google Scholar 

  23. Ordonez NG. Desmoplastic small round cell tumor: II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol. 1998;22(11):1314–27.

    Article  CAS  PubMed  Google Scholar 

  24. Gerald WL, Ladanyi M, de Alava E, Cuatrecasas M, Kushner BH, LaQuaglia MP, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J Clin Oncol. 1998;16(9):3028–36.

    Article  CAS  PubMed  Google Scholar 

  25. Miettinen M, Fetsch JF. Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: implications in tumor diagnosis. Hum Pathol. 2000;31(9):1062–7.

    Article  CAS  PubMed  Google Scholar 

  26. Miettinen M. Immunoreactivity for cytokeratin and epithelial membrane antigen in leiomyosarcoma. Arch Pathol Lab Med. 1988;112(6):637–40.

    CAS  PubMed  Google Scholar 

  27. Miettinen M, Rapola J. Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyosarcoma-like tumors. Expression of cytokeratin and the 68-kD neurofilament protein. Am J Surg Pathol. 1989;13(2):120–32.

    Article  CAS  PubMed  Google Scholar 

  28. Miettinen J, Helin H, Pakarinen M, Jalanko H, Lauronen J. Histopathology and biomarkers in prediction of renal function in children after kidney transplantation. Transpl Immunol. 2014;31(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  29. Jones H, Steart PV, Du Boulay CE, Roche WR. Alpha-smooth muscle actin as a marker for soft tissue tumours: a comparison with desmin. J Pathol. 1990;162(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  30. Miettinen M. Antibody specific to muscle actins in the diagnosis and classification of soft tissue tumors. Am J Pathol. 1988;130(1):205–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt RA, Cone R, Haas JE, Gown AM. Diagnosis of rhabdomyosarcomas with HHF35, a monoclonal antibody directed against muscle actins. Am J Pathol. 1988;131(1):19–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Truong LD, Rangdaeng S, Cagle P, Ro JY, Hawkins H, Font RL. The diagnostic utility of desmin. A study of 584 cases and review of the literature. Am J Clin Pathol. 1990;93(3):305–14.

    Article  CAS  PubMed  Google Scholar 

  33. Folpe AL, Weiss SW, Fletcher CD, Gown AM. Tenosynovial giant cell tumors: evidence for a desmin-positive dendritic cell subpopulation. Mod Pathol. 1998;11(10):939–44.

    CAS  PubMed  Google Scholar 

  34. Ceballos KM, Nielsen GP, Selig MK, O’Connell JX. Is anti-h-caldesmon useful for distinguishing smooth muscle and myofibroblastic tumors? An immunohistochemical study. Am J Clin Pathol. 2000;114(5):746–53.

    Article  CAS  PubMed  Google Scholar 

  35. Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25(9):1150–7.

    Article  CAS  PubMed  Google Scholar 

  36. Coindre JM. Immunohistochemistry in the diagnosis of soft tissue tumours. Histopathology. 2003;43(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  37. Kuzu I, Bicknell R, Harris AL, Jones M, Gatter KC, Mason DY. Heterogeneity of vascular endothelial cells with relevance to diagnosis of vascular tumours. J Clin Pathol. 1992;45(2):143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miettinen M, Lindenmayer AE, Chaubal A. Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens--evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol. 1994;7(1):82–90.

    CAS  PubMed  Google Scholar 

  39. Folpe AL, Chand EM, Goldblum JR, Weiss SW. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol. 2001;25(8):1061–6.

    Article  CAS  PubMed  Google Scholar 

  40. Miettinen M, Wang ZF, Paetau A, Tan SH, Dobi A, Srivastava S, et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol. 2011;35(3):432–41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod Pathol. 2002;15(4):434–40.

    Article  PubMed  Google Scholar 

  42. Fukunaga M. Expression of D2-40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology. 2005;46(4):396–402.

    Article  CAS  PubMed  Google Scholar 

  43. Kahn HJ, Marks A, Thom H, Baumal R. Role of antibody to S100 protein in diagnostic pathology. Am J Clin Pathol. 1983;79(3):341–7.

    Article  CAS  PubMed  Google Scholar 

  44. Weiss SW, Langloss JM, Enzinger FM. Value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Investig. 1983;49(3):299–308.

    CAS  PubMed  Google Scholar 

  45. Schmitt FC, Bacchi CE. S-100 protein: is it useful as a tumour marker in diagnostic immunocytochemistry? Histopathology. 1989;15(3):281–8.

    Article  CAS  PubMed  Google Scholar 

  46. Springall DR, Gu J, Cocchia D, Michetti F, Levene A, Levene MM, et al. The value of S-100 immunostaining as a diagnostic tool in human malignant melanomas. A comparative study using S-100 and neuron-specific enolase antibodies. Virchows Arch A Pathol Anat Histopathol. 1983;400(3):331–43.

    Article  CAS  PubMed  Google Scholar 

  47. Chinoy RF, Jadav J. Clear cell sarcomas of the tendon sheath. An experience of 22 cases seen over 16 years. Indian J Cancer. 1989;26(3):164–74.

    CAS  PubMed  Google Scholar 

  48. Feasel PC, Cheah AL, Fritchie K, Winn B, Piliang M, Billings SD. Primary clear cell sarcoma of the head and neck: a case series with review of the literature. J Cutan Pathol. 2016;43(10):838–46.

    Article  PubMed  Google Scholar 

  49. Meis-Kindblom JM, Bergh P, Gunterberg B, Kindblom LG. Extraskeletal myxoid chondrosarcoma: a reappraisal of its morphologic spectrum and prognostic factors based on 117 cases. Am J Surg Pathol. 1999;23(6):636–50.

    Article  CAS  PubMed  Google Scholar 

  50. Okamoto S, Hisaoka M, Ishida T, Imamura T, Kanda H, Shimajiri S, et al. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of 18 cases. Hum Pathol. 2001;32(10):1116–24.

    Article  CAS  PubMed  Google Scholar 

  51. Matsunou H, Shimoda T, Kakimoto S, Yamashita H, Ishikawa E, Mukai M. Histopathologic and immunohistochemical study of malignant tumors of peripheral nerve sheath (malignant schwannoma). Cancer. 1985;56(9):2269–79.

    Article  CAS  PubMed  Google Scholar 

  52. Wick MR, Swanson PE, Scheithauer BW, Manivel JC. Malignant peripheral nerve sheath tumor. An immunohistochemical study of 62 cases. Am J Clin Pathol. 1987;87(4):425–33.

    Article  CAS  PubMed  Google Scholar 

  53. Ohsie SJ, Sarantopoulos GP, Cochran AJ, Binder SW. Immunohistochemical characteristics of melanoma. J Cutan Pathol. 2008;35(5):433–44.

    Article  PubMed  Google Scholar 

  54. Hornick JL, Fletcher CD. PEComa: what do we know so far? Histopathology. 2006;48(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  55. Busam KJ, Jungbluth AA. Melan-A, a new melanocytic differentiation marker. Adv Anat Pathol. 1999;6(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kindblom LG, Lodding P, Angervall L. Clear-cell sarcoma of tendons and aponeuroses. An immunohistochemical and electron microscopic analysis indicating neural crest origin. Virchows Arch A Pathol Anat Histopathol. 1983;401(1):109–28.

    Article  CAS  PubMed  Google Scholar 

  57. Schaefer IM, Fletcher CD, Hornick JL. Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol. 2016;29(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  58. Terry J, Saito T, Subramanian S, Ruttan C, Antonescu CR, Goldblum JR, et al. TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol. 2007;31(2):240–6.

    Article  PubMed  Google Scholar 

  59. Knosel T, Heretsch S, Altendorf-Hofmann A, Richter P, Katenkamp K, Katenkamp D, et al. TLE1 is a robust diagnostic biomarker for synovial sarcomas and correlates with t(X;18): analysis of 319 cases. Eur J Cancer. 2010;46(6):1170–6.

    Article  PubMed  CAS  Google Scholar 

  60. Kosemehmetoglu K, Vrana JA, Folpe AL. TLE1 expression is not specific for synovial sarcoma: a whole section study of 163 soft tissue and bone neoplasms. Mod Pathol. 2009;22(7):872–8.

    Article  CAS  PubMed  Google Scholar 

  61. Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung YS, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45(2):180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279(5350):577–80.

    Article  CAS  PubMed  Google Scholar 

  63. Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, Miettinen M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol. 1998;11(8):728–34.

    CAS  PubMed  Google Scholar 

  64. Miettinen M, Wang ZF, Lasota J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol. 2009;33(9):1401–8.

    Article  PubMed  Google Scholar 

  65. Novelli M, Rossi S, Rodriguez-Justo M, Taniere P, Seddon B, Toffolatti L, et al. DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology. 2010;57(2):259–70.

    Article  PubMed  Google Scholar 

  66. Hornick JL. Practical soft tissue pathology: a diagnostic approach e-book: a volume in the pattern recognition series. Amsterdam: Elsevier Health Sciences; 2017.

    Google Scholar 

  67. Alam NA, Barclay E, Rowan AJ, Tyrer JP, Calonje E, Manek S, et al. Clinical features of multiple cutaneous and uterine leiomyomatosis: an underdiagnosed tumor syndrome. Arch Dermatol. 2005;141(2):199–206.

    Article  PubMed  Google Scholar 

  68. Patel VM, Handler MZ, Schwartz RA, Lambert WC. Hereditary leiomyomatosis and renal cell cancer syndrome: an update and review. J Am Acad Dermatol. 2017;77(1):149–58.

    Article  PubMed  Google Scholar 

  69. Alkhalili E, Greenbaum A, Langsfeld M, Marek J, Rana MA, Glew R, et al. Leiomyosarcoma of the inferior vena cava: a case series and review of the literature. Ann Vasc Surg. 2016;33:245–51.

    Article  PubMed  Google Scholar 

  70. Wachtel H, Gupta M, Bartlett EK, Jackson BM, Kelz RR, Karakousis GC, et al. Outcomes after resection of leiomyosarcomas of the inferior vena cava: a pooled data analysis of 377 cases. Surg Oncol. 2015;24(1):21–7.

    Article  PubMed  Google Scholar 

  71. Scheithauer BW, Woodruff JM, Erlandson RA. Tumors of the peripheral nervous system. Silver Spring: Amer Registry of Pathology; 1999.

    Google Scholar 

  72. Hilton DA, Hanemann CO. Schwannomas and their pathogenesis. Brain Pathol. 2014;24(3):205–20.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Plotkin SR, Wick A. Neurofibromatosis and schwannomatosis. Semin Neurol. 2018;38(1):73–85.

    Article  PubMed  Google Scholar 

  74. Gonzalvo A, Fowler A, Cook RJ, Little NS, Wheeler H, McDonald KL, et al. Schwannomatosis, sporadic schwannomatosis, and familial schwannomatosis: a surgical series with long-term follow-up. Clinical article. J Neurosurg. 2011;114(3):756–62.

    Article  PubMed  Google Scholar 

  75. Laskin WB. Dermatofibrosarcoma protuberans. CA Cancer J Clin. 1992;42(2):116–25.

    Article  CAS  PubMed  Google Scholar 

  76. Fletcher CD, Theaker JM, Flanagan A, Krausz T. Pigmented dermatofibrosarcoma protuberans (Bednar tumour): melanocytic colonization or neuroectodermal differentiation? A clinicopathological and immunohistochemical study. Histopathology. 1988;13(6):631–43.

    Article  CAS  PubMed  Google Scholar 

  77. Thway K, Noujaim J, Jones RL, Fisher C. Dermatofibrosarcoma protuberans: pathology, genetics, and potential therapeutic strategies. Ann Diagn Pathol. 2016;25:64–71.

    Article  PubMed  Google Scholar 

  78. Song JS, Kim EJ, Park CS, Cho KJ. Dermatofibrosarcoma protuberans: an immunomarker study of 57 cases that included putative mesenchymal stem cell markers. Appl Immunohistochem Mol Morphol. 2017;25(8):586–91.

    Article  CAS  PubMed  Google Scholar 

  79. Connelly JH, Evans HL. Dermatofibrosarcoma protuberans. A clinicopathologic review with emphasis on fibrosarcomatous areas. Am J Surg Pathol. 1992;16(10):921–5.

    Article  CAS  PubMed  Google Scholar 

  80. Monnier D, Vidal C, Martin L, Danzon A, Pelletier F, Puzenat E, et al. Dermatofibrosarcoma protuberans: a population-based cancer registry descriptive study of 66 consecutive cases diagnosed between 1982 and 2002. J Eur Acad Dermatol Venereol. 2006;20(10):1237–42.

    Article  CAS  PubMed  Google Scholar 

  81. Gloster HM Jr. Dermatofibrosarcoma protuberans. J Am Acad Dermatol. 1996;35(3 Pt 1):355–74; quiz 75–6.

    Article  PubMed  Google Scholar 

  82. Chang CK, Jacobs IA, Salti GI. Outcomes of surgery for dermatofibrosarcoma protuberans. Eur J Surg Oncol. 2004;30(3):341–5.

    Article  CAS  PubMed  Google Scholar 

  83. Fiore M, Miceli R, Mussi C, Lo Vullo S, Mariani L, Lozza L, et al. Dermatofibrosarcoma protuberans treated at a single institution: a surgical disease with a high cure rate. J Clin Oncol. 2005;23(30):7669–75.

    Article  PubMed  Google Scholar 

  84. Pedeutour F, Simon MP, Minoletti F, Barcelo G, Terrier-Lacombe MJ, Combemale P, et al. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet. 1996;72(2–3):171–4.

    Article  CAS  PubMed  Google Scholar 

  85. Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer. 2003;37(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  86. McArthur GA, Demetri GD, van Oosterom A, Heinrich MC, Debiec-Rychter M, Corless CL, et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol. 2005;23(4):866–73.

    Article  CAS  PubMed  Google Scholar 

  87. Noujaim J, Thway K, Fisher C, Jones RL. Dermatofibrosarcoma protuberans: from translocation to targeted therapy. Cancer Biol Med. 2015;12(4):375–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Montgomery E, Lee JH, Abraham SC, Wu TT. Superficial fibromatoses are genetically distinct from deep fibromatoses. Mod Pathol. 2001;14(7):695–701.

    Article  CAS  PubMed  Google Scholar 

  89. Carlson JW, Fletcher CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51(4):509–14.

    Article  CAS  PubMed  Google Scholar 

  90. Le Guellec S, Soubeyran I, Rochaix P, Filleron T, Neuville A, Hostein I, et al. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol. 2012;25(12):1551–8.

    Article  PubMed  CAS  Google Scholar 

  91. Lips DJ, Barker N, Clevers H, Hennipman A. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). Eur J Surg Oncol. 2009;35(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  92. Sundaram M, Duffrin H, McGuire MH, Vas W. Synchronous multicentric desmoid tumors (aggressive fibromatosis) of the extremities. Skelet Radiol. 1988;17(1):16–9.

    Article  CAS  Google Scholar 

  93. Watanabe K, Ogura G, Tajino T, Suzuki T. Extra-abdominal desmoid fibromatosis: two familial cases with synchronous and metachronous multicentric hyalinizing nodules. Histopathology. 2002;41(2):118–21.

    Article  CAS  PubMed  Google Scholar 

  94. Kohli K, Kawatra V, Khurana N, Jain S. Multicentric synchronous recurrent aggressive fibromatosis. J Cytol. 2012;29(1):57–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fletcher CD. Diagnostic histopathology of tumors: 2-volume set with CD-ROMs. Amsterdam: Elsevier Health Sciences; 2007.

    Google Scholar 

  96. Schweizer L, Koelsche C, Sahm F, Piro RM, Capper D, Reuss DE, et al. Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol. 2013;125(5):651–8.

    Article  CAS  PubMed  Google Scholar 

  97. Chan JK. Solitary fibrous tumour--everywhere, and a diagnosis in vogue. Histopathology. 1997;31(6):568–76.

    Article  CAS  PubMed  Google Scholar 

  98. Brunnemann RB, Ro JY, Ordonez NG, Mooney J, El-Naggar AK, Ayala AG. Extrapleural solitary fibrous tumor: a clinicopathologic study of 24 cases. Mod Pathol. 1999;12(11):1034–42.

    CAS  PubMed  Google Scholar 

  99. Demicco EG, Park MS, Araujo DM, Fox PS, Bassett RL, Pollock RE, et al. Solitary fibrous tumor: a clinicopathological study of 110 cases and proposed risk assessment model. Mod Pathol. 2012;25(9):1298–306.

    Article  PubMed  Google Scholar 

  100. Mosquera JM, Fletcher CD. Expanding the spectrum of malignant progression in solitary fibrous tumors: a study of 8 cases with a discrete anaplastic component--is this dedifferentiated SFT? Am J Surg Pathol. 2009;33(9):1314–21.

    Article  PubMed  Google Scholar 

  101. Fisher C. Synovial sarcoma: ultrastructural and immunohistochemical features of epithelial differentiation in monophasic and biphasic tumors. Hum Pathol. 1986;17(10):996–1008.

    Article  CAS  PubMed  Google Scholar 

  102. Miettinen M. Keratin subsets in spindle cell sarcomas. Keratins are widespread but synovial sarcoma contains a distinctive keratin polypeptide pattern and desmoplakins. Am J Pathol. 1991;138(2):505–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Corson JM, Weiss LM, Banks-Schlegel SP, Pinkus GS. Keratin proteins and carcinoembryonic antigen in synovial sarcomas: an immunohistochemical study of 24 cases. Hum Pathol. 1984;15(7):615–21.

    Article  CAS  PubMed  Google Scholar 

  104. Pelmus M, Guillou L, Hostein I, Sierankowski G, Lussan C, Coindre JM. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT-SSX)-positive cases. Am J Surg Pathol. 2002;26(11):1434–40.

    Article  PubMed  Google Scholar 

  105. Smith TA, Machen SK, Fisher C, Goldblum JR. Usefulness of cytokeratin subsets for distinguishing monophasic synovial sarcoma from malignant peripheral nerve sheath tumor. Am J Clin Pathol. 1999;112(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  106. van de Rijn M, Barr FG, Xiong QB, Hedges M, Shipley J, Fisher C. Poorly differentiated synovial sarcoma: an analysis of clinical, pathologic, and molecular genetic features. Am J Surg Pathol. 1999;23(1):106–12.

    Article  PubMed  Google Scholar 

  107. Foo WC, Cruise MW, Wick MR, Hornick JL. Immunohistochemical staining for TLE1 distinguishes synovial sarcoma from histologic mimics. Am J Clin Pathol. 2011;135(6):839–44.

    Article  PubMed  Google Scholar 

  108. Reeves BR, Smith S, Fisher C, Warren W, Knight J, Martin C, et al. Characterization of the translocation between chromosomes X and 18 in human synovial sarcomas. Oncogene. 1989;4(3):373–8.

    CAS  PubMed  Google Scholar 

  109. Knight J, Reeves B, Smith S, Clark J, Fisher C, Fletcher C, et al. Cytogenetic and molecular analysis of synovial sarcoma. Int J Oncol. 1992;1(7):747–52.

    Article  CAS  PubMed  Google Scholar 

  110. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8.

    Article  CAS  PubMed  Google Scholar 

  111. Skytting B, Nilsson G, Brodin B, Xie Y, Lundeberg J, Uhlen M, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 1999;91(11):974–5.

    Article  CAS  PubMed  Google Scholar 

  112. Storlazzi CT, Mertens F, Mandahl N, Gisselsson D, Isaksson M, Gustafson P, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer. 2003;37(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  113. Terry J, Barry TS, Horsman DE, Hsu FD, Gown AM, Huntsman DG, et al. Fluorescence in situ hybridization for the detection of t(X;18)(p11.2;q11.2) in a synovial sarcoma tissue microarray using a breakapart-style probe. Diagn Mol Pathol. 2005;14(2):77–82.

    Article  CAS  PubMed  Google Scholar 

  114. Guillou L, Coindre J, Gallagher G, Terrier P, Gebhard S, de Saint Aubain Somerhausen N, et al. Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 2001;32(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  115. Fisher C. Synovial sarcoma. Ann Diagn Pathol. 1998;2(6):401–21.

    Article  CAS  PubMed  Google Scholar 

  116. Hornick JL. Novel uses of immunohistochemistry in the diagnosis and classification of soft tissue tumors. Mod Pathol. 2014;27(Suppl 1):S47–63.

    Article  CAS  PubMed  Google Scholar 

  117. Marino-Enriquez A. Advances in the molecular analysis of soft tissue tumors and clinical implications. Surg Pathol Clin. 2015;8(3):525–37.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hawkins DS, Spunt SL, Skapek SX, Committee COGSTS. Children’s Oncology Group’s 2013 blueprint for research: soft tissue sarcomas. Pediatr Blood Cancer. 2013;60(6):1001–8.

    Article  PubMed  Google Scholar 

  119. Malempati S, Hawkins DS. Rhabdomyosarcoma: review of the Children’s Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr Blood Cancer. 2012;59(1):5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019;5(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Seidal T, Kindblom LG, Angervall L. Myoglobin, desmin and vimentin in ultrastructurally proven rhabdomyomas and rhabdomyosarcomas. An immunohistochemical study utilizing a series of monoclonal and polyclonal antibodies. Appl Pathol. 1987;5(4):201–19.

    CAS  PubMed  Google Scholar 

  122. Fisher C. Immunohistochemistry in diagnosis of soft tissue tumours. Histopathology. 2011;58(7):1001–12.

    Article  PubMed  Google Scholar 

  123. Dias P, Parham DM, Shapiro DN, Webber BL, Houghton PJ. Myogenic regulatory protein (MyoD1) expression in childhood solid tumors: diagnostic utility in rhabdomyosarcoma. Am J Pathol. 1990;137(6):1283–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kumar S, Perlman E, Harris CA, Raffeld M, Tsokos M. Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol. 2000;13(9):988–93.

    Article  CAS  PubMed  Google Scholar 

  125. Cui S, Hano H, Harada T, Takai S, Masui F, Ushigome S. Evaluation of new monoclonal anti-MyoD1 and anti-myogenin antibodies for the diagnosis of rhabdomyosarcoma. Pathol Int. 1999;49(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  126. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2002;20(11):2672–9.

    Article  CAS  PubMed  Google Scholar 

  127. Evans HL. Low-grade fibromyxoid sarcoma. A report of two metastasizing neoplasms having a deceptively benign appearance. Am J Clin Pathol. 1987;88(5):615–9.

    Article  CAS  PubMed  Google Scholar 

  128. Evans HL. Low-grade fibromyxoid sarcoma. A report of 12 cases. Am J Surg Pathol. 1993;17(6):595–600.

    Article  CAS  PubMed  Google Scholar 

  129. Folpe AL, Lane KL, Paull G, Weiss SW. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol. 2000;24(10):1353–60.

    Article  CAS  PubMed  Google Scholar 

  130. Lane KL, Shannon RJ, Weiss SW. Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol. 1997;21(12):1481–8.

    Article  CAS  PubMed  Google Scholar 

  131. Doyle LA, Moller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35(5):733–41.

    Article  PubMed  Google Scholar 

  132. Reid R, de Silva MV, Paterson L, Ryan E, Fisher C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol. 2003;27(9):1229–36.

    Article  PubMed  Google Scholar 

  133. Angervall L, Kindblom LG, Merck C. Myxofibrosarcoma. A study of 30 cases. Acta Pathol Microbiol Scand A. 1977;85A(2):127–40.

    CAS  PubMed  Google Scholar 

  134. Mentzel T, Calonje E, Wadden C, Camplejohn RS, Beham A, Smith MA, et al. Myxofibrosarcoma. Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol. 1996;20(4):391–405.

    Article  CAS  PubMed  Google Scholar 

  135. Huang HY, Lal P, Qin J, Brennan MF, Antonescu CR. Low-grade myxofibrosarcoma: a clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Hum Pathol. 2004;35(5):612–21.

    Article  PubMed  Google Scholar 

  136. Merck C, Angervall L, Kindblom LG, Oden A. Myxofibrosarcoma. A malignant soft tissue tumor of fibroblastic-histiocytic origin. A clinicopathologic and prognostic study of 110 cases using multivariate analysis. Acta Pathol Microbiol Immunol Scand Suppl. 1983;282:1–40.

    CAS  PubMed  Google Scholar 

  137. Graadt van Roggen JF, Hogendoorn PC, Fletcher CD. Myxoid tumours of soft tissue. Histopathology. 1999;35(4):291–312.

    Article  CAS  PubMed  Google Scholar 

  138. Howard WR, Helwig EB. Angiolipoma. Arch Dermatol. 1960;82:924–31.

    Article  CAS  PubMed  Google Scholar 

  139. Dixon AY, McGregor DH, Lee SH. Angiolipomas: an ultrastructural and clinicopathological study. Hum Pathol. 1981;12(8):739–47.

    Article  CAS  PubMed  Google Scholar 

  140. Enzinger FM, Harvey DA. Spindle cell lipoma. Cancer. 1975;36(5):1852–9.

    Article  CAS  PubMed  Google Scholar 

  141. Angervall L, Dahl I, Kindblom LG, Save S. Spindle cell lipoma. Acta Pathol Microbiol Scand A. 1976;84(6):477–87.

    CAS  PubMed  Google Scholar 

  142. Fletcher CD, Martin-Bates E. Spindle cell lipoma: a clinicopathological study with some original observations. Histopathology. 1987;11(8):803–17.

    Article  CAS  PubMed  Google Scholar 

  143. Chung EB, Enzinger FM. Benign lipoblastomatosis. An analysis of 35 cases. Cancer. 1973;32(2):482–92.

    Article  CAS  PubMed  Google Scholar 

  144. Mentzel T, Calonje E, Fletcher CD. Lipoblastoma and lipoblastomatosis: a clinicopathological study of 14 cases. Histopathology. 1993;23(6):527–33.

    Article  CAS  PubMed  Google Scholar 

  145. Collins MH, Chatten J. Lipoblastoma/lipoblastomatosis: a clinicopathologic study of 25 tumors. Am J Surg Pathol. 1997;21(10):1131–7.

    Article  CAS  PubMed  Google Scholar 

  146. Kindblom LG, Angervall L, Svendsen P. Liposarcoma a clinicopathologic, radiographic and prognostic study. Acta Pathol Microbiol Scand Suppl. 1975;253:1–71.

    Google Scholar 

  147. Hashimoto H, Enjoji M. Liposarcoma. A clinicopathologic subtyping of 52 cases. Acta Pathol Jpn. 1982;32(6):933–48.

    CAS  PubMed  Google Scholar 

  148. Laurino L, Furlanetto A, Orvieto E, Dei Tos AP. Well-differentiated liposarcoma (atypical lipomatous tumors). Semin Diagn Pathol. 2001;18(4):258–62.

    CAS  PubMed  Google Scholar 

  149. Thway K. Well-differentiated liposarcoma and dedifferentiated liposarcoma: an updated review. Semin Diagn Pathol. 2019;36(2):112–21.

    Article  PubMed  Google Scholar 

  150. Dal Cin P, Kools P, Sciot R, De Wever I, Van Damme B, Van de Ven W, et al. Cytogenetic and fluorescence in situ hybridization investigation of ring chromosomes characterizing a specific pathologic subgroup of adipose tissue tumors. Cancer Genet Cytogenet. 1993;68(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  151. Rosai J, Akerman M, Dal Cin P, DeWever I, Fletcher CD, Mandahl N, et al. Combined morphologic and karyotypic study of 59 atypical lipomatous tumors. Evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP Study Group). Am J Surg Pathol. 1996;20(10):1182–9.

    Article  CAS  PubMed  Google Scholar 

  152. Nilbert M, Rydholm A, Willen H, Mitelman F, Mandahl N. MDM2 gene amplification correlates with ring chromosome in soft tissue tumors. Genes Chromosomes Cancer. 1994;9(4):261–5.

    Article  CAS  PubMed  Google Scholar 

  153. Weaver J, Downs-Kelly E, Goldblum JR, Turner S, Kulkarni S, Tubbs RR, et al. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol. 2008;21(8):943–9.

    Article  CAS  PubMed  Google Scholar 

  154. Kimura H, Dobashi Y, Nojima T, Nakamura H, Yamamoto N, Tsuchiya H, et al. Utility of fluorescence in situ hybridization to detect MDM2 amplification in liposarcomas and their morphological mimics. Int J Clin Exp Pathol. 2013;6(7):1306–16.

    PubMed  PubMed Central  Google Scholar 

  155. Creytens D, van Gorp J, Ferdinande L, Speel EJ, Libbrecht L. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH). Appl Immunohistochem Mol Morphol. 2015;23(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  156. Thway K, Wang J, Swansbury J, Min T, Fisher C. Fluorescence in situ hybridization for MDM2 amplification as a routine ancillary diagnostic tool for suspected well-differentiated and dedifferentiated liposarcomas: experience at a tertiary center. Sarcoma. 2015;2015:812089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Coindre JM, Pedeutour F, Aurias A. Well-differentiated and dedifferentiated liposarcomas. Virchows Arch. 2010;456(2):167–79.

    Article  CAS  PubMed  Google Scholar 

  158. Evans HL. Liposarcoma: a study of 55 cases with a reassessment of its classification. Am J Surg Pathol. 1979;3(6):507–23.

    Article  CAS  PubMed  Google Scholar 

  159. Henricks WH, Chu YC, Goldblum JR, Weiss SW. Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Surg Pathol. 1997;21(3):271–81.

    Article  CAS  PubMed  Google Scholar 

  160. Azumi N, Curtis J, Kempson RL, Hendrickson MR. Atypical and malignant neoplasms showing lipomatous differentiation. A study of 111 cases. Am J Surg Pathol. 1987;11(3):161–83.

    Article  CAS  PubMed  Google Scholar 

  161. Sirvent N, Coindre JM, Maire G, Hostein I, Keslair F, Guillou L, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31(10):1476–89.

    Article  PubMed  Google Scholar 

  162. McCormick D, Mentzel T, Beham A, Fletcher CD. Dedifferentiated liposarcoma. Clinicopathologic analysis of 32 cases suggesting a better prognostic subgroup among pleomorphic sarcomas. Am J Surg Pathol. 1994;18(12):1213–23.

    Article  CAS  PubMed  Google Scholar 

  163. Kilpatrick SE, Doyon J, Choong PF, Sim FH, Nascimento AG. The clinicopathologic spectrum of myxoid and round cell liposarcoma. A study of 95 cases. Cancer. 1996;77(8):1450–8.

    Article  CAS  PubMed  Google Scholar 

  164. Orvieto E, Furlanetto A, Laurino L, Dei Tos AP. Myxoid and round cell liposarcoma: a spectrum of myxoid adipocytic neoplasia. Semin Diagn Pathol. 2001;18(4):267–73.

    CAS  PubMed  Google Scholar 

  165. Antonescu CR, Tschernyavsky SJ, Decuseara R, Leung DH, Woodruff JM, Brennan MF, et al. Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin Cancer Res. 2001;7(12):3977–87.

    CAS  PubMed  Google Scholar 

  166. Estourgie SH, Nielsen GP, Ott MJ. Metastatic patterns of extremity myxoid liposarcoma and their outcome. J Surg Oncol. 2002;80(2):89–93.

    Article  PubMed  Google Scholar 

  167. Gibas Z, Miettinen M, Limon J, Nedoszytko B, Mrozek K, Roszkiewicz A, et al. Cytogenetic and immunohistochemical profile of myxoid liposarcoma. Am J Clin Pathol. 1995;103(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  168. Rabbitts TH, Forster A, Larson R, Nathan P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet. 1993;4(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  169. Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363(6430):640–4.

    Article  CAS  PubMed  Google Scholar 

  170. Oliveira AM, Nascimento AG. Pleomorphic liposarcoma. Semin Diagn Pathol. 2001;18(4):274–85.

    CAS  PubMed  Google Scholar 

  171. Gebhard S, Coindre JM, Michels JJ, Terrier P, Bertrand G, Trassard M, et al. Pleomorphic liposarcoma: clinicopathologic, immunohistochemical, and follow-up analysis of 63 cases: a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol. 2002;26(5):601–16.

    Article  PubMed  Google Scholar 

  172. Hornick JL, Bosenberg MW, Mentzel T, McMenamin ME, Oliveira AM, Fletcher CD. Pleomorphic liposarcoma: clinicopathologic analysis of 57 cases. Am J Surg Pathol. 2004;28(10):1257–67.

    Article  PubMed  Google Scholar 

  173. Wang L, Ren W, Zhou X, Sheng W, Wang J. Pleomorphic liposarcoma: a clinicopathological, immunohistochemical and molecular cytogenetic study of 32 additional cases. Pathol Int. 2013;63(11):523–31.

    Article  CAS  PubMed  Google Scholar 

  174. Anderson WJ, Jo VY. Pleomorphic liposarcoma: updates and current differential diagnosis. Semin Diagn Pathol. 2019;36(2):122–8.

    Article  PubMed  Google Scholar 

  175. Fletcher CD. Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol. 1992;16(3):213–28.

    Article  CAS  PubMed  Google Scholar 

  176. Fletcher CDM, Gustafson P, Rydholm A, Willén H, Åkerman M. Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol. 2001;19(12):3045–50.

    Article  CAS  PubMed  Google Scholar 

  177. Vodanovich DA, Spelman T, May D, Slavin J, Choong PFM. Predicting the prognosis of undifferentiated pleomorphic soft tissue sarcoma: a 20-year experience of 266 cases. ANZ J Surg. 2019;89(9):1045–50.

    Article  PubMed  Google Scholar 

  178. Weiss SW, Enzinger FM. Malignant fibrous histiocytoma: an analysis of 200 cases. Cancer. 1978;41(6):2250–66.

    Article  CAS  PubMed  Google Scholar 

  179. Gibbs JF, Huang PP, Lee RJ, McGrath B, Brooks J, McKinley B, et al. Malignant fibrous histiocytoma: an institutional review. Cancer Investig. 2001;19(1):23–7.

    Article  CAS  Google Scholar 

  180. Peiper M, Zurakowski D, Knoefel WT, Izbicki JR. Malignant fibrous histiocytoma of the extremities and trunk: an institutional review. Surgery. 2004;135(1):59–66.

    Article  PubMed  Google Scholar 

  181. Coindre JM, Mariani O, Chibon F, Mairal A, De Saint Aubain Somerhausen N, Favre-Guillevin E, et al. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol. 2003;16(3):256–62.

    Article  PubMed  Google Scholar 

  182. Mertens F, Fletcher CD, Dal Cin P, De Wever I, Mandahl N, Mitelman F, et al. Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Chromosomes and MorPhology. Genes Chromosomes Cancer. 1998;22(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  183. Lindberg MR. Diagnostic pathology: soft tissue tumors. Amsterdam: Elsevier Health Sciences; 2015.

    Google Scholar 

  184. Trojani M, Contesso G, Coindre JM, Rouesse J, Bui NB, de Mascarel A, et al. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer. 1984;33(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  185. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. New York: Wiley; 2017.

    Google Scholar 

  186. Amin MB, Edge SB. AJCC cancer staging manual. New York: Springer; 2017.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, V., Slavin, J. (2021). Soft Tissue Tumour Pathology. In: Choong, P.F.M. (eds) Sarcoma . Springer, Singapore. https://doi.org/10.1007/978-981-15-9414-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9414-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9413-7

  • Online ISBN: 978-981-15-9414-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics