Skip to main content

Status and Recent Progress in Determining the Genetic Diversity and Phylogeny of Cotton Crops

  • Chapter
  • First Online:
Cotton Science and Processing Technology

Abstract

The significance of plant genetic diversity (PGD) is predictable as an exact part since the public explosion of urbanization, and the decline of cultivable land is the severe issues subsidizing to food security in underdeveloped countries. Agricultural researchers realized that plant genetic diversity could be apprehended and deposited, such as gene bank, DNA library, etc. In the biorepository that preserves genetic material for a long time. However, the preserved plant genetic resources should be used to improve crops to meet upcoming universal challenges related to food and nutrition security. This article reviews the most significant areas related to cotton crops; (i) the importance of plant genetic diversity (PGD) mainly arable crops; (ii) investigation of existing PGD analysis methods in the pre-genomic and genomic age; and (iii) modern tools available for PGD analysis. This review will help the plant science researchers to use the available modern resources and latest tools for a better and quick assessment for the use of germplasm from gene banks to their ongoing breeding programs. By introducing new biotechnological practices, the management of the genomic alteration process is now enhanced and accepted with more accuracy than old classical breeding skills. It should also be noted that gene banks are investigating several problems to improve the levels of distribution of germplasms and its use, especially replication of plant uniqueness and access to the databanks for research accomplishments. Therefore, as plant breeders and crop developers are essential components in successful food production, accessibility and approach to different genetic sources will guarantee that the universal demand for food and livelihood becomes maintainable. Molecular methods have a severe and unavoidable leading role in the challenges of phylogeny and speciation. In recent times, there is a new class of cutting-edge practices that has materialized, mainly an amalgamation of earlier and more basic techniques. Most advanced cutting-edge marker-based procedures tend to combine beneficial topographies by several basic methods to detect genetic gap and quirkiness. Mast innovative, cutting-edge marker-based techniques are used with a new class of DNA components, such as chloroplast microsatellites, to depict variation in the genetically altered genome. Furthermore, the latest technologies, such as RAPD and AFLP, also apply to cDNA-based patterns to study gene expression and blur the impression of biological responses. Furthermost imperative and latest improvements made indent for molecular marker techniques are discussed in this review, which improves the understanding of weather kegs and its practical usefulness for scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simair, A. A. (2012). Production, purification and characterization of Xylanase produced by Pleurotus Eryngii. University of Sindh, Jamshoro-Pakistan, 2012.

    Google Scholar 

  2. Ayubov, M. S., Abdurakhmonov, I. Y., Sripathi, V. R., Saha, S., Norov, T. M., Buriev, Z. T., et al. (2018). Recent developments in fiber genomics of tetraploid cotton species. Past, Present and Future Trends in Cotton Breeding. IntechOpen, Rijeka, 123–152.

    Google Scholar 

  3. Chaudhry, M. R., & Guitchounts, A. (2003). Cotton facts. DC, USA: International Cotton Advisory Committee Washington.

    Google Scholar 

  4. Radhakrishnan, S. (2017). Sustainable cotton production (pp. 21–67). In Sustainable Fibres and Textiles: Elsevier.

    Google Scholar 

  5. Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics research international, 2015.

    Google Scholar 

  6. Barcaccia, G., Albertini, E., Rosellini, D., Tavoletti, S., & Veronesi, F. (2000). Inheritance and mapping of 2 n-egg production in diploid alfalfa. Genome, 43, 528–537.

    Article  CAS  Google Scholar 

  7. Wendel, J. F., Brubaker, C., Alvarez, I., Cronn, R., & Stewart, J. M. (2009). Evolution and natural history of the cotton genus (pp. 3–22). In Genetics and genomics of cotton: Springer.

    Google Scholar 

  8. Smith, C. W., & Cothren, J. T. (1999). Cotton: Origin, history, technology, and production (Vol. 4). John Wiley & Sons.

    Google Scholar 

  9. Brubaker, C., Cantrell, R., Giband, M., Lyon, B., & Wilkins, T. (2000). Letter to journal of cotton science community from the steering committee of the international cotton genome initiative (ICGI). Journal of Cotton Science, 4, 149–151.

    Google Scholar 

  10. Khadi, B., Santhy, V., & Yadav, M. (2010). Cotton: An introduction (pp. 1–14). In Cotton: Springer.

    Book  Google Scholar 

  11. Litt, M., & Luty, J. A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, 44, 397.

    CAS  Google Scholar 

  12. Allan, G., & Max, T. (2010) Molecular genetic techniques and markers for ecological research. Nature Education Knowledge, 3.

    Google Scholar 

  13. Abdalla, A., Reddy, O., El-Zik, K., & Pepper, A. (2001). Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theoretical and Applied Genetics, 102, 222–229.

    Article  CAS  Google Scholar 

  14. Freeman, S., & Herron, J. C. (2007). Evolutionary analysis. NJ: Pearson Prentice Hall Upper Saddle River.

    Google Scholar 

  15. Goldstein, D., & Pollock, D. (1997). Launching microsatellites: A review of mutation processes and methods of phylogenetic inference. Journal of Heredity, 88, 335–342.

    Article  CAS  Google Scholar 

  16. Shaffer, M. L., & Samson, F. B. (1985). Population size and extinction: A note on determining critical population sizes. The American Naturalist, 125, 144–152.

    Article  Google Scholar 

  17. Paterson, A. H. (1996). Making genetic maps. Genome Mapping in Plants, 23–39.

    Google Scholar 

  18. Winter, P., & Kahl, G. (1995). Molecular marker technologies for plant improvement. World Journal of Microbiology & Biotechnology, 11, 438–448.

    Article  CAS  Google Scholar 

  19. Weising, K., Nybom, H., Pfenninger, M., Wolff, K., & Meyer, W. (1994). DNA fingerprinting in plants and fungi. CRC press.

    Google Scholar 

  20. Baird, W. V., Abbott, A. G., Ballard, R., Sosinski, B., & Rajapakse, S. (2018). DNA diagnostics in horticulture. Technology Transfer of Plant Biotechnology, 111–125.

    Google Scholar 

  21. Henry, R. J. (1997). Practical applications of plant molecular biology. Garland Science.

    Google Scholar 

  22. Djè, Y., Heuertz, M., Lefebvre, C., & Vekemans, X. (2000). Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theoretical and Applied Genetics, 100, 918–925.

    Article  Google Scholar 

  23. Ali, M., Rajewski, J., Baenziger, P., Gill, K., Eskridge, K., & Dweikat, I. (2008). Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Molecular Breeding, 21, 497–509.

    Article  CAS  Google Scholar 

  24. Alvarez, A., Fuentes, J. L., Puldón, V., Gómez, P. J., Mora, L., Duque, M. C., et al. (2007). Genetic diversity analysis of Cuban traditional rice (Oryza sativa L.) varieties based on microsatellite markers. Genetics and Molecular Biology, 30, 1109–1117.

    Google Scholar 

  25. Jahufer, M., Barrett, B., Griffiths, A., & Woodfield, D. DNA fingerprinting and genetic relationships among white clover cultivars. In Proceedings of Proceedings of the New Zealand Grassland Association (pp. 163–169).

    Google Scholar 

  26. Dubcovsky, J., Ramakrishna, W., SanMiguel, P. J., Busso, C. S., Yan, L., Shiloff, B. A., et al. (2001). Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiology, 125, 1342–1353.

    Article  CAS  Google Scholar 

  27. Collard, B. C., Jahufer, M., Brouwer, J., & Pang, E. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169–196.

    Article  CAS  Google Scholar 

  28. Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.

    Article  CAS  Google Scholar 

  29. Elsh, J., & McClelland, M. (1991). Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Research, 19, 5275–5279.

    Google Scholar 

  30. Jacobson, A., & Hedrén, M. (2007). Phylogenetic relationships in Alisma (Alismataceae) based on RAPDs, and sequence data from ITS and trnL. Plant Systematics and Evolution, 265, 27–44.

    Article  Google Scholar 

  31. Semagn, K., Bjørnstad, Å., & Ndjiondjop, M. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5.

    Google Scholar 

  32. Mondini, L., Noorani, A., & Pagnotta, M. A. (2009). Assessing plant genetic diversity by molecular tools. Diversity, 1, 19–35.

    Article  CAS  Google Scholar 

  33. Armour, J., Alegre, S., Miles, S., Williams, L., & Badge, R. (1999). Minisatellites and mutation processes in tandemly repetitive DNA. Microsatellites: Evolution and Applications, 24–33.

    Google Scholar 

  34. Hoelzel, A. R. (1998). Molecular genetic analysis of populations: A practical approach.

    Google Scholar 

  35. Queller, D. C., Strassmann, J. E., & Hughes, C. R. (1993). Microsatellites and kinship. Trends in Ecology & Evolution, 8, 285–288.

    Article  CAS  Google Scholar 

  36. Bruford, M. W. (1996). Microsatellites and their application in conservation genetics. Molecular Genetics Approaches to Conservation.

    Google Scholar 

  37. McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652–654.

    Article  CAS  Google Scholar 

  38. Hammond, R. L., Saccheri, I. J., Ciofi, C., Coote, T., Funk, S. M., McMillan, W. O., et al. (1998). Isolation of microsatellite markers in animals. In Molecular tools for screening biodiversity (pp. 279–285). Springer.

    Google Scholar 

  39. Zafar, Y. (2018) Past, present and future trends in cotton breeding. BoD–Books on Demand.

    Google Scholar 

  40. Chen, H., Khan, M. K. R., Zhou, Z., Wang, X., Cai, X., & Ilyas, M. K. (2015). A high-density SSR genetic map constructed from a F2 population of G. hirsutum and G. darwinii. Gene, 574, 273–286.

    Google Scholar 

  41. Iqbal, M. A., & Rahman, M.-U. (2017). Identification of marker-trait associations for lint traits in cotton. Frontiers in Plant Science, 8, 86.

    Google Scholar 

  42. Hinze, L. L., Gazave, E., Gore, M. A., Fang, D. D., Scheffler, B. E., Yu, J. Z., et al. (2016). Genetic diversity of the two commercial tetraploid cotton species in the Gossypium diversity reference set. Journal of Heredity, 107, 274–286.

    Article  Google Scholar 

  43. John, Z. Y., Ulloa, M., Hoffman, S. M., Kohel, R. J., Pepper, A. E., Fang, D. D., et al. (2014). Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (G. hirsutum L. × G. barbadense L.) RIL population. Molecular Genetics and Genomics, 289, 1347–1367.

    Google Scholar 

  44. Abdurakhmonov, I. Y., Saha, S., Jenkins, J. N., Buriev, Z. T., Shermatov, S. E., Scheffler, B. E., et al. (2009). Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica, 136, 401–417.

    Google Scholar 

  45. Guo, W., Cai, C., Wang, C., Han, Z., Song, X., Wang, K., et al. (2007). A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 176, 527–541.

    Article  CAS  Google Scholar 

  46. Park, Y.-H., Alabady, M. S., Ulloa, M., Sickler, B., Wilkins, T. A., Yu, J., et al. (2005). Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Molecular Genetics and Genomics, 274, 428–441.

    Article  CAS  Google Scholar 

  47. Wada, Y., Miyamoto, K., Kusano, T., & Sano, H. (2004). Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Molecular Genetics and Genomics, 271, 658–666. https://doi.org/10.1007/s00438-004-1018-4.

    Article  CAS  Google Scholar 

  48. Wang, L., Liu, H., Li, X., Xiao, X., Ai, X., Luo, C., et al. (2014). Genetic mapping of fiber color genes on two brown cotton cultivars in Xinjiang. SpringerPlus, 3, 480. https://doi.org/10.1186/2193-1801-3-480.

    Article  CAS  Google Scholar 

  49. Wang, M., Tu, L., Lin, M., Lin, Z., Wang, P., Yang, Q., et al. (2017). Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nature Genetics, 49, 579–587. https://doi.org/10.1038/ng.3807.

    Article  CAS  Google Scholar 

  50. Yu, J., Jung, S., Cheng, C.-H., Ficklin, S. P., Lee, T., Zheng, P., et al. (2013). CottonGen: A genomics, genetics and breeding database for cotton research. Nucleic Acids Research, 42, D1229–D1236. https://doi.org/10.1093/nar/gkt1064.

    Article  CAS  Google Scholar 

  51. Blenda, A., Scheffler, J., Scheffler, B., Palmer, M., Lacape, J.-M., Yu, J. Z., et al. (2006). CMD: A cotton microsatellite database resource for Gossypium genomics. BMC Genomics, 7, 132. https://doi.org/10.1186/1471-2164-7-132.

    Article  CAS  Google Scholar 

  52. Wang, B., Liu, L., Zhang, D., Zhuang, Z., Guo, H., Qiao, X., et al. (2016). A genetic map between G. hirsutum and the Brazilian endemic G. mustelinum and its application to QTL mapping. G3: Genes, Genomes, Genetics, 6, 1673–1685.

    Google Scholar 

  53. Bi, C., Paterson, A. H., Wang, X., Xu, Y., Wu, D., Qu, Y.; et al. (2016). Analysis of the complete mitochondrial genome sequence of the diploid cotton G. raimondii by comparative genomics approaches. BioMed Research International, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf Ahmed Simair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simair, A.A., Simair, S.P. (2020). Status and Recent Progress in Determining the Genetic Diversity and Phylogeny of Cotton Crops. In: Wang, H., Memon, H. (eds) Cotton Science and Processing Technology. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9169-3_2

Download citation

Publish with us

Policies and ethics