Skip to main content

Advanced Physical Applications of Modified Cotton

  • Chapter
  • First Online:
Cotton Science and Processing Technology

Abstract

Today, modified cotton materials have become an important aspect of man’s life since they can be utilized in various advanced applications. Among them, superhydrophobicity and flame retardancy are the most crucial improvements for advanced industrial physical applications. These are characterized by enhancement of the physical resistance of cotton textiles against water and fire, respectively, which are the most common physical conditions that favor the degradation of natural materials. This hence provides safety to human life and his property. The present chapter, therefore, summarizes the research progress of cotton fabrics modified for advanced physical applications, highlighting the different chemical agents used and their binding interaction, imparting techniques, the quality of the modified textiles, and the potential fields of usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag NPs:

Silver nanoparticles

ATRP:

Atomic transfer radical polymerization

BA:

Butyl acrylate

BR:

Bacterial reduction rate

CNTs:

Carbon nanotubes

CVP:

Chemical Vapor Deposition

EMI:

Electromagnetic interference

DMAEMA:

2-(dimethylamino)ethyl methacrylate

DD:

Degree of deacetylation

DMSO:

Dimethyl sulfoxide

DCM:

Dichloromethane

FAS:

Fluoroalkyl silane

GMA:

Glycidyl methacrylate

GO:

Graphene oxide

HEMA:

Hydroxyethyl methacrylate

HFBA:

Hexafluoro butyl acrylate

HFP:

Hexafluoropropylene

HMDSO:

Hexamethyldisiloxane

HPLC:

High Performance Liquid Chromatography

LbL:

Layer-by-layer

LODs:

Limits of detection

LOI:

Limiting oxygen index

MMA:

Methyl methacrylate

MOFs:

Metal-organic frameworks

NPs:

Nanoparticles

NWs:

Nanowires

OCA:

Oil contact angle

PDMS:

Polydimethylsiloxane

PDTS:

1H,1H,2H,2H-perfluorodecyltriethoxysilane

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEG:

Polyethylene glycol

PEI:

Polyethyleneimine

PFWs:

Perfluorinated waxes

PMMA:

Poly(methyl methacrylate)

POSS:

Polyhedral oligomeric silsesquioxane

POTS:

1H,1H,2H,2H-perfluorooctyltriethoxysilane

PP:

Polypropylene

PSS:

Poly(styrene sulfonate)

PTFMA:

Poly(trifluoro ethyl methacrylate)

PVDF:

Poly(vinylidene fluoride-co-hexafluoropropylene)

PVD:

Physical Vapor Deposition

SA:

Stearyl acrylate

RhB:

Rhodamine B

rGO:

Reduced graphene oxide

RSDs:

Relative standard deviations

SDS:

Sodium dodecyl sulfate

SP:

Solid phase

UV:

Ultra-violet

UPF:

UV protection factor

WCA:

Water contact angle

WSA:

Water-shedding angle

References

  1. Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18, 273–285. https://doi.org/10.1016/j.mattod.2015.01.001.

    Article  CAS  Google Scholar 

  2. Bhushan, B. (2009). Biomimetics: Lessons from nature—An overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering, 367, 1445–1486. https://doi.org/10.1098/rsta.2009.0011.

    Article  CAS  Google Scholar 

  3. Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8. https://doi.org/10.1007/s004250050096.

    Article  CAS  Google Scholar 

  4. Li, L., Li, B., Dong, J., & Zhang, J. (2016). Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. Journal of Materials Chemistry A, 4, 13677–13725. https://doi.org/10.1039/C6TA05441B.

    Article  CAS  Google Scholar 

  5. Roach, P., Shirtcliffe, N. J., & Newton, M. I. (2008). Progess in superhydrophobic surface development. Soft Matter, 4, 224–240. https://doi.org/10.1039/B712575P.

    Article  CAS  Google Scholar 

  6. Wang, S., Liu, K., Yao, X., & Jiang, L. (2015). Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chemical Reviews, 115, 8230–8293. https://doi.org/10.1021/cr400083y.

    Article  CAS  Google Scholar 

  7. Darmanin, T., & Guittard, F. (2014). Recent advances in the potential applications of bioinspired superhydrophobic materials. Journal of Materials Chemistry A, 2, 16319–16359. https://doi.org/10.1039/C4TA02071E.

    Article  CAS  Google Scholar 

  8. Yuan, Y., & Lee, T. R. (2013). Contact angle and wetting properties. 51, 3–34. https://doi.org/10.1007/978-3-642-34243-1_1.

  9. Guo, F., Wen, Q., Peng, Y., & Guo, Z. (2017). Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties. Journal of Colloid and Interface Science, 494, 54–63. https://doi.org/10.1016/j.jcis.2017.01.070.

    Article  CAS  Google Scholar 

  10. Wu, H., Wu, L., Lu, S., Lin, X., Xiao, H., Ouyang, X., et al. (2018). Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation. Carbohydrate Polymers, 181, 419–425. https://doi.org/10.1016/j.carbpol.2017.08.078.

    Article  CAS  Google Scholar 

  11. Feng, X. J., & Jiang, L. (2006). Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18, 3063–3078. https://doi.org/10.1002/adma.200501961.

    Article  CAS  Google Scholar 

  12. Chu, Z., & Seeger, S. (2014). Superamphiphobic surfaces. Chemical Society Reviews, 43, 2784–2798. https://doi.org/10.1039/C3CS60415B.

    Article  CAS  Google Scholar 

  13. Ellinas, K. (2020). Chapter 18—Superhydrophobic and superamphiphobic smart surfaces. In A. S. H. Makhlouf & N. Y. Abu-Thabit (Eds.), Advances in smart coatings and thin films for future industrial and biomedical engineering applications (pp. 487–514). Elsevier. https://doi.org/10.1016/B978-0-12-849870-5.00015-X.

  14. Baba, E. M., Cansoy, C. E., & Zayim, E. O. (2016). Investigation of wettability and optical properties of superhydrophobic polystyrene-SiO2 composite surfaces. Progress in Organic Coatings, 99, 378–385. https://doi.org/10.1016/j.porgcoat.2016.06.016.

    Article  CAS  Google Scholar 

  15. Forsman, N., Lozhechnikova, A., Khakalo, A., Johansson, L.-S., Vartiainen, J., & Österberg, M. (2017). Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydrate Polymers, 173, 392–402. https://doi.org/10.1016/j.carbpol.2017.06.007.

    Article  CAS  Google Scholar 

  16. Jang, H., Lee, H. S., Lee, K.-S., & Kim, D. R. (2017). Facile fabrication of superomniphobic polymer hierarchical structures for directional droplet movement. ACS Applied Materials & Interfaces, 9, 9213–9220. https://doi.org/10.1021/acsami.6b16015.

    Article  CAS  Google Scholar 

  17. Wu, J., Li, J., Wang, Z., Yu, M., Jiang, H., Li, L., et al. (2015). Designing breathable superhydrophobic cotton fabrics. RSC Advances, 5, 27752–27758. https://doi.org/10.1039/C5RA01028D.

    Article  CAS  Google Scholar 

  18. Li, F., Du, M., & Zheng, Q. (2016). Dopamine/Silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating. ACS Nano, 10, 2910–2921. https://doi.org/10.1021/acsnano.6b00036.

    Article  CAS  Google Scholar 

  19. Quéré, D. (2008). Wetting and roughness. Annual Review of Materials Research, 38, 71–99. https://doi.org/10.1146/annurev.matsci.38.060407.132434.

    Article  CAS  Google Scholar 

  20. Deng, X., Mammen, L., Butt, H.-J., & Doris, V. (2011). Candle soot as a template for a transparent robust superamphiphobic coating. Science (New York, N.Y.), 335, 67–70. https://doi.org/10.1126/science.1207115.

  21. Tuteja, A., Choi, W., Ma, M., Mabry, J., Mazzella, S., Rutledge, G., et al. (2008). Designing superoleophobic surfaces. Science (New York, N.Y.), 318, 1618–1622. https://doi.org/10.1126/science.1148326.

  22. Peng, S., Yang, X., Tian, D., & Deng, W. (2014). Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure. ACS Applied Materials & Interfaces, 6, 15188–15197. https://doi.org/10.1021/am503441x.

    Article  CAS  Google Scholar 

  23. Gao, X., Wen, G., & Guo, Z. (2018). Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 115–126. https://doi.org/10.1016/j.colsurfa.2018.09.041.

    Article  CAS  Google Scholar 

  24. Zimmermann, J., Rabe, M., Artus, G. R. J., & Seeger, S. (2008). Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter, 4, 450–452. https://doi.org/10.1039/B717734H.

    Article  CAS  Google Scholar 

  25. Darmanin, T., & Guittard, F. (2009). Molecular design of conductive polymers to modulate superoleophobic properties. Journal of the American Chemical Society, 131, 7928–7933. https://doi.org/10.1021/ja901392s.

    Article  CAS  Google Scholar 

  26. Liu, H., Gao, S.-W., Cai, J.-S., He, C.-L., Mao, J.-J., Zhu, T.-X., et al. (2016). Recent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials, 9, 124.

    Article  Google Scholar 

  27. Ma, M., & Hill, R. M. (2006). Superhydrophobic surfaces. Current Opinion in Colloid & Interface Science, 11, 193–202. https://doi.org/10.1016/j.cocis.2006.06.002.

    Article  CAS  Google Scholar 

  28. Wang, J., & Chen, Y. (2015). Oil–water separation capability of superhydrophobic fabrics fabricated via combining polydopamine adhesion with lotus-leaf-like structure. Journal of Applied Polymer Science, 132. https://doi.org/10.1002/app.42614.

  29. Xu, Z., Zhao, Y., Wang, H., Zhou, H., Qin, C., Wang, X., et al. (2016). Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation. ACS Applied Materials & Interfaces, 8, 5661–5667. https://doi.org/10.1021/acsami.5b11720.

    Article  CAS  Google Scholar 

  30. Wang, B., Liang, W., Guo, Z., & Liu, W. (2015). Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 44, 336–361. https://doi.org/10.1039/C4CS00220B.

    Article  Google Scholar 

  31. Ganesh, V. A., Raut, H. K., Nair, A. S., & Ramakrishna, S. (2011). A review on self-cleaning coatings. Journal of Materials Chemistry, 21, 16304–16322. https://doi.org/10.1039/C1JM12523K.

    Article  CAS  Google Scholar 

  32. Zhang, M., Wang, S., Wang, C., & Li, J. (2012). A facile method to fabricate superhydrophobic cotton fabrics. Applied Surface Science, 261, 561–566. https://doi.org/10.1016/j.apsusc.2012.08.055.

    Article  CAS  Google Scholar 

  33. Ragesh, P., Anand Ganesh, V., Nair, S. V., & Nair, S. A. (2014). A review on ‘self-cleaning and multifunctional materials’. Journal of Materials Chemistry A, 2, 14773–14797. https://doi.org/10.1039/C4TA02542C.

    Article  CAS  Google Scholar 

  34. Li, X., Li, Y., Guan, T., Xu, F., & Sun, J. (2018). Durable, highly electrically conductive cotton fabrics with healable superamphiphobicity. ACS Applied Materials & Interfaces, 10, 12042–12050. https://doi.org/10.1021/acsami.8b01279.

    Article  CAS  Google Scholar 

  35. Lv, J., Song, Y., Jiang, L., & Wang, J. (2014). Bio-inspired strategies for anti-icing. ACS Nano, 8, 3152–3169. https://doi.org/10.1021/nn406522n.

    Article  CAS  Google Scholar 

  36. Chambers, L. D., Stokes, K. R., Walsh, F. C., & Wood, R. J. K. (2006). Modern approaches to marine antifouling coatings. Surface & Coatings Technology, 201, 3642–3652. https://doi.org/10.1016/j.surfcoat.2006.08.129.

    Article  CAS  Google Scholar 

  37. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50, 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001.

    Article  CAS  Google Scholar 

  38. Reverdy, C., Belgacem, N., Moghaddam, M. S., Sundin, M., Swerin, A., & Bras, J. (2018). One-step superhydrophobic coating using hydrophobized cellulose nanofibrils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 152–158. https://doi.org/10.1016/j.colsurfa.2017.12.059.

    Article  CAS  Google Scholar 

  39. Li, S., Huang, J., Chen, Z., Chen, G., & Lai, Y. (2017). A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5, 31–55. https://doi.org/10.1039/C6TA07984A.

    Article  CAS  Google Scholar 

  40. Chatterjee, S., Sinha Mahapatra, P., Ibrahim, A., Ganguly, R., Yu, L., Dodge, R., et al. (2018). Precise liquid transport on and through thin porous materials. Langmuir, 34, 2865–2875. https://doi.org/10.1021/acs.langmuir.7b04093.

    Article  CAS  Google Scholar 

  41. Sen, U., Chatterjee, S., Sinha Mahapatra, P., Ganguly, R., Dodge, R., Yu, L., et al. (2018). Surface-wettability patterning for distributing high-momentum water jets on porous polymeric substrates. ACS Applied Materials & Interfaces, 10, 5038–5049. https://doi.org/10.1021/acsami.7b13744.

    Article  CAS  Google Scholar 

  42. Zhu, T., Li, S., Huang, J., Mihailiasa, M., & Lai, Y. (2017). Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Materials and Design, 134, 342–351. https://doi.org/10.1016/j.matdes.2017.08.071.

    Article  CAS  Google Scholar 

  43. Cortese, B., Caschera, D., Federici, F., Ingo, G. M., & Gigli, G. (2014). Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating. Journal of Materials Chemistry A, 2, 6781–6789. https://doi.org/10.1039/C4TA00450G.

    Article  CAS  Google Scholar 

  44. Razavi, S. M. R., Masoomi, M., & Bagheri, R. (2018). Facile strategy toward developing a scalable, environmental friendly and self-cleaning superhydrophobic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 541, 108–116. https://doi.org/10.1016/j.colsurfa.2018.01.038.

    Article  CAS  Google Scholar 

  45. Cao, C., Ge, M., Huang, J., Li, S., Deng, S., Zhang, S., et al. (2016). Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. Journal of Materials Chemistry A, 4, 12179–12187. https://doi.org/10.1039/C6TA04420D.

    Article  CAS  Google Scholar 

  46. Zhang, M., Pang, J., Bao, W., Zhang, W., Gao, H., Wang, C., et al. (2017). Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation. Applied Surface Science, 419, 16–23. https://doi.org/10.1016/j.apsusc.2017.05.008.

    Article  CAS  Google Scholar 

  47. Kim, T., Kang, H., & Yoon, N. (2017). Synthesis of non-fluorinated paraffinic water repellents and application properties on textile fabrics. Fibers and Polymers, 18, 285–289. https://doi.org/10.1007/s12221-017-6469-4.

    Article  CAS  Google Scholar 

  48. Liu, Q., Huang, J., Zhang, J., Hong, Y., Wan, Y., Wang, Q., et al. (2018). Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Applied Materials & Interfaces, 10, 2026–2032. https://doi.org/10.1021/acsami.7b16422.

    Article  CAS  Google Scholar 

  49. Liu, H., Huang, J., Li, F., Chen, Z., Zhang, K.-Q., Al-Deyab, S. S., et al. (2017). Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 24, 1129–1141. https://doi.org/10.1007/s10570-016-1177-6.

    Article  CAS  Google Scholar 

  50. Pereira, C., Alves, C., Monteiro, A., Magén, C., Pereira, A. M., Ibarra, A., et al. (2011). Designing novel hybrid materials by one-pot co-condensation: From hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Applied Materials & Interfaces, 3, 2289–2299. https://doi.org/10.1021/am200220x.

    Article  CAS  Google Scholar 

  51. Qiang, S., Chen, K., Yin, Y., & Wang, C. (2017). Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability. Materials and Design, 116, 395–402. https://doi.org/10.1016/j.matdes.2016.11.099.

    Article  CAS  Google Scholar 

  52. Xiong, D., Liu, G., & Duncan, E. J. S. (2012). Diblock-copolymer-coated water- and oil-repellent cotton fabrics. Langmuir, 28, 6911–6918. https://doi.org/10.1021/la300634v.

    Article  CAS  Google Scholar 

  53. Xue, C.-H., Jia, S.-T., Zhang, J., & Tian, L.-Q. (2009). Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films, 517, 4593–4598. https://doi.org/10.1016/j.tsf.2009.03.185.

    Article  CAS  Google Scholar 

  54. Huang, J. Y., Li, S. H., Ge, M. Z., Wang, L. N., Xing, T. L., Chen, G. Q., et al. (2015). Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. Journal of Materials Chemistry A, 3, 2825–2832. https://doi.org/10.1039/C4TA05332J.

    Article  CAS  Google Scholar 

  55. Zhou, X., Zhang, Z., Xu, X., Guo, F., Zhu, X., Men, X., et al. (2013). Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Applied Materials & Interfaces, 5, 7208–7214. https://doi.org/10.1021/am4015346.

    Article  CAS  Google Scholar 

  56. Periolatto, M., Ferrero, F., Montarsolo, A., & Mossotti, R. (2013). Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose, 20, 355–364. https://doi.org/10.1007/s10570-012-9821-2.

    Article  CAS  Google Scholar 

  57. Przybylak, M., Maciejewski, H., Dutkiewicz, A., Wesołek, D., & Władyka-Przybylak, M. (2016). Multifunctional, strongly hydrophobic and flame-retarded cotton fabrics modified with flame retardant agents and silicon compounds. Polymer Degradation and Stability, 128, 55–64. https://doi.org/10.1016/j.polymdegradstab.2016.03.003.

    Article  CAS  Google Scholar 

  58. Lu, X., Sun, Y., Chen, Z., & Gao, Y. (2017). A multi-functional textile that combines self-cleaning, water-proofing and VO2-based temperature-responsive thermoregulating. Solar Energy Materials and Solar Cells, 159, 102–111. https://doi.org/10.1016/j.solmat.2016.08.020.

    Article  CAS  Google Scholar 

  59. Mai, Z., Xiong, Z., Shu, X., Liu, X., Zhang, H., Yin, X., et al. (2018). Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohydrate Polymers, 199, 516–525. https://doi.org/10.1016/j.carbpol.2018.07.052.

    Article  CAS  Google Scholar 

  60. Ivanova, N. A., & Philipchenko, A. B. (2012). Superhydrophobic chitosan-based coatings for textile processing. Applied Surface Science, 263, 783–787. https://doi.org/10.1016/j.apsusc.2012.09.173.

    Article  CAS  Google Scholar 

  61. Jiang, J., Zhang, G., Wang, Q., Zhang, Q., Zhan, X., & Chen, F. (2016). Novel fluorinated polymers containing short perfluorobutyl side chains and their super wetting performance on diverse substrates. ACS Applied Materials & Interfaces, 8, 10513–10523. https://doi.org/10.1021/acsami.6b01102.

    Article  CAS  Google Scholar 

  62. Cai, L., Dai, L., Yuan, Y., Liu, A., & Zhanxiong, L. (2016). Synthesis of novel polymethacrylates with siloxyl bridging perfluoroalkyl side-chains for hydrophobic application on cotton fabrics. Applied Surface Science, 371, 453–467. https://doi.org/10.1016/j.apsusc.2016.03.010.

    Article  CAS  Google Scholar 

  63. Zahid, M., Heredia-Guerrero, J. A., Athanassiou, A., & Bayer, I. S. (2017). Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chemical Engineering Journal, 319, 321–332. https://doi.org/10.1016/j.cej.2017.03.006.

    Article  CAS  Google Scholar 

  64. Mondal, S., Pal, S., & Maity, J. (2018). Transparent and double sided hydrophobic functionalization of cotton fabric by surfactant-assisted admicellar polymerization of fluoromonomers. New Journal of Chemistry, 42, 6831–6838. https://doi.org/10.1039/C8NJ00019K.

    Article  CAS  Google Scholar 

  65. Chen, X., Zhou, J., & Ma, J. (2015). Synthesis of a cationic fluorinated polyacrylate emulsifier-free emulsion via ab initio RAFT emulsion polymerization and its hydrophobic properties of coating films. RSC Advances, 5, 97231–97238. https://doi.org/10.1039/C5RA15399A.

    Article  CAS  Google Scholar 

  66. Xi, G., Fan, W., Wang, L., Liu, X., & Endo, T. (2015). Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2-trifluoroethyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry, 53, 1862–1871. https://doi.org/10.1002/pola.27632.

    Article  CAS  Google Scholar 

  67. Li, S. H., Huang, J. Y., Ge, M. Z., Li, S. W., Xing, T. L., Chen, G. Q., et al. (2015). Controlled grafting superhydrophobic cellulose surface with environmentally-friendly short fluoroalkyl chains by ATRP. Materials and Design, 85, 815–822. https://doi.org/10.1016/j.matdes.2015.07.083.

    Article  CAS  Google Scholar 

  68. Chen, T., Hong, J., Peng, C., Chen, G., Yuan, C., Xu, Y., et al. (2019). Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohydrate Polymers, 208, 14–21. https://doi.org/10.1016/j.carbpol.2018.12.023.

    Article  CAS  Google Scholar 

  69. Li, Y., Ge, B., Men, X., Zhang, Z., & Xue, Q. (2016). A facile and fast approach to mechanically stable and rapid self-healing waterproof fabrics. Composites Science and Technology, 125, 55–61. https://doi.org/10.1016/j.compscitech.2016.01.021.

    Article  CAS  Google Scholar 

  70. Ge, B., Yang, X., Li, H., Zhao, L., Ren, G., Miao, X., et al. (2020). A durable superhydrophobic BiOBr/PFW cotton fabric for visible light response degradation and oil/water separation performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124027. https://doi.org/10.1016/j.colsurfa.2019.124027.

    Article  CAS  Google Scholar 

  71. Gore, P. M., & Dhanshetty, M. K. B. (2016). Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Advances, 6, 111250–111260. https://doi.org/10.1039/c6ra24106a.

  72. Ahmad, N., Kamal, S., Raza, Z. A., Hussain, T., & Anwar, F. (2016). Multi-response optimization in the development of oleo-hydrophobic cotton fabric using Taguchi based grey relational analysis. Applied Surface Science, 367, 370–381. https://doi.org/10.1016/j.apsusc.2016.01.165.

    Article  CAS  Google Scholar 

  73. Moiz, A., Padhye, R., & Wang, X. (2018). Durable superomniphobic surface on cotton fabrics via coating of silicone rubber and fluoropolymers. Coatings, 8, 104. https://doi.org/10.3390/coatings8030104.

    Article  CAS  Google Scholar 

  74. Zhou, P., Zhang, L., Sui, X., Zhong, Y., Wang, B., Chen, Z., et al. (2020). A facile method for fabricating color adjustable multifunctional cotton fabrics with solid solution BiOBrxI1−x nanosheets. Cellulose. https://doi.org/10.1007/s10570-020-03007-x.

    Article  Google Scholar 

  75. Li, J., Yan, L., Zhao, Y., Zha, F., Wang, Q., & Lei, Z. (2015). One-step fabrication of robust fabrics with both-faced superhydrophobicity for the separation and capture of oil from water. Physical Chemistry Chemical Physics, 17, 6451–6457. https://doi.org/10.1039/C5CP00154D.

    Article  CAS  Google Scholar 

  76. Li, J., Yan, L., Tang, X., Feng, H., Hu, D., & Zha, F. (2016). Robust superhydrophobic fabric bag filled with polyurethane sponges used for vacuum-assisted continuous and ultrafast absorption and collection of oils from water. Advanced Materials Interfaces, 3, 1500770. https://doi.org/10.1002/admi.201500770.

    Article  CAS  Google Scholar 

  77. Wu, Y., Qi, H., Li, B., Zhanhua, H., Li, W., & Liu, S. (2017). Novel hydrophobic cotton fibers adsorbent for the removal of nitrobenzene in aqueous solution. Carbohydrate Polymers, 155, 294–302. https://doi.org/10.1016/j.carbpol.2016.08.088.

    Article  CAS  Google Scholar 

  78. Guo, N., Chen, Y., Rao, Q., Yin, Y., & Wang, C. (2015). Fabrication of durable hydrophobic cellulose surface from silane-functionalized silica hydrosol via electrochemically assisted deposition. Journal of Applied Polymer Science, 132. https://doi.org/10.1002/app.42733.

  79. Hao, L., Gao, T., Xu, W., Wang, X., Yang, S., & Liu, X. (2016). Preparation of crosslinked polysiloxane/SiO2 nanocomposite via in-situ condensation and its surface modification on cotton fabrics. Applied Surface Science, 371, 281–288. https://doi.org/10.1016/j.apsusc.2016.02.204.

    Article  CAS  Google Scholar 

  80. Wang, H., Zhou, H., Liu, S., Shao, H., Fu, S., Rutledge, G. C., et al. (2017). Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings. RSC Advances, 7, 33986–33993. https://doi.org/10.1039/c7ra04863g.

    Article  CAS  Google Scholar 

  81. Fu, S., Zhou, H., Wang, H., Ding, J., Liu, S., Zhao, Y., et al. (2018). Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings. RSC Advances, 8, 717–723. https://doi.org/10.1039/c7ra10941e.

    Article  CAS  Google Scholar 

  82. Guo, F., Wen, Q., Peng, Y., & Guo, Z. (2017). Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation. Journal of Materials Chemistry A, 5, 21866–21874. https://doi.org/10.1039/c7ta05599d.

    Article  CAS  Google Scholar 

  83. Ye, H., Zhu, L., Li, W., Liu, H., & Chen, H. (2017). Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles. ACS Applied Materials & Interfaces, 9, 858–867. https://doi.org/10.1021/acsami.6b12820.

    Article  CAS  Google Scholar 

  84. Yin, Y., Huang, R., Zhang, W., Zhang, M., & Wang, C. (2016). Superhydrophobic–superhydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate. Chemical Engineering Journal, 289, 99–105. https://doi.org/10.1016/j.cej.2015.12.049.

    Article  CAS  Google Scholar 

  85. Cerny, P., Bartos, P., Olsan, P., & Spatenka, P. (2019). Hydrophobization of cotton fabric by Gliding Arc plasma discharge. Current Applied Physics, 19, 128–136. https://doi.org/10.1016/j.cap.2018.11.006.

    Article  Google Scholar 

  86. Singh, A. K., & Singh, J. K. (2017). Fabrication of durable superhydrophobic coatings on cotton fabrics with photocatalytic activity by fluorine-free chemical modification for dual-functional water purification. New Journal of Chemistry, 41, 4618–4628. https://doi.org/10.1039/c7nj01042g.

    Article  CAS  Google Scholar 

  87. Rabnawaz, M., Wang, Z., Wang, Y., Wyman, I., Hu, H., & Liu, G. (2015). Synthesis of poly(dimethylsiloxane)-block-poly[3-(triisopropyloxysilyl) propyl methacrylate] and its use in the facile coating of hydrophilically patterned superhydrophobic fabrics. RSC Advances, 5, 39505–39511. https://doi.org/10.1039/C5RA02067K.

    Article  CAS  Google Scholar 

  88. Yan, H., Zhou, H., Ye, Q., Wang, X., Cho, C. M., Tan, A. Y. X., et al. (2016). Engineering polydimethylsiloxane with two-dimensional graphene oxide for an extremely durable superhydrophobic fabric coating. RSC Advances, 6, 66834–66840. https://doi.org/10.1039/c6ra14362h.

    Article  CAS  Google Scholar 

  89. Ma, Y., Zhu, D., Si, Y., & Sun, G. (2018). Fabricating durable, fluoride-free, water repellency cotton fabrics with CPDMS. Journal of Applied Polymer Science, 135, 46396. https://doi.org/10.1002/app.46396.

    Article  CAS  Google Scholar 

  90. Xu, L., Zhang, X., Shen, Y., Ding, Y., Wang, L., & Sheng, Y. (2018). Durable superhydrophobic cotton textiles with ultraviolet-blocking property and photocatalysis based on flower-like copper sulfide. Industrial and Engineering Chemistry Research, 57, 6714–6725. https://doi.org/10.1021/acs.iecr.8b00254.

    Article  CAS  Google Scholar 

  91. Shateri-Khalilabad, M., & Yazdanshenas, M. E. (2013). Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 20, 963–972. https://doi.org/10.1007/s10570-013-9873-y.

    Article  CAS  Google Scholar 

  92. Hou, K., Zeng, Y., Zhou, C., Chen, J., Wen, X., Xu, S., et al. (2018). Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry. Chemical Engineering Journal, 332, 150–159. https://doi.org/10.1016/j.cej.2017.09.074.

    Article  CAS  Google Scholar 

  93. Sun, D., Wang, W., & Yu, D. (2016). Preparation of fluorine-free water repellent finishing via thiol-ene click reaction on cotton fabrics. Materials Letters, 185, 514–518. https://doi.org/10.1016/j.matlet.2016.09.042.

    Article  CAS  Google Scholar 

  94. Yang, M., Liu, W., Jiang, C., Xie, Y., Shi, H., Zhang, F., et al. (2019). Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 172–181. https://doi.org/10.1016/j.colsurfa.2019.03.024.

    Article  CAS  Google Scholar 

  95. Xue, C., Zhang, L., Wei, P., & Jia, S.-T. (2016). Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose, 23. https://doi.org/10.1007/s10570-016-0885-2.

  96. Sun, D., Wang, W., & Yu, D. (2017). Highly hydrophobic cotton fabrics prepared with fluorine-free functionalized silsesquioxanes. Cellulose, 24, 4519–4531. https://doi.org/10.1007/s10570-017-1388-5.

    Article  CAS  Google Scholar 

  97. Pan, N., Liu, Y., Ren, X., & Huang, T.-S. (2018). Fabrication of cotton fabrics through in-situ reduction of polymeric N-halamine modified graphene oxide with enhanced ultraviolet-blocking, self-cleaning, and highly efficient, and monitorable antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555, 765–771. https://doi.org/10.1016/j.colsurfa.2018.07.056.

    Article  CAS  Google Scholar 

  98. Patil, G. D., Patil, A. H., Jadhav, S. A., Patil, C. R., & Patil, P. S. (2019). A new method to prepare superhydrophobic cotton fabrics by post-coating surface modification of ZnO nanoparticles. Materials Letters, 255, 126562. https://doi.org/10.1016/j.matlet.2019.126562.

    Article  CAS  Google Scholar 

  99. Cheng, Q.-Y., Guan, C.-S., Wang, M., Li, Y.-D., & Zeng, J.-B. (2018). Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydrate Polymers, 199, 390–396. https://doi.org/10.1016/j.carbpol.2018.07.046.

    Article  CAS  Google Scholar 

  100. Manatunga, D. C., de Silva, R. M., & de Silva, K. M. N. (2016). Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Applied Surface Science, 360, 777–788. https://doi.org/10.1016/j.apsusc.2015.11.068.

    Article  CAS  Google Scholar 

  101. Chen, X., Zhou, Q., Zhang, Y., Zhao, J., Yan, B., Tang, S., et al. (2020). Fabrication of superhydrophobic cotton fabric based on reaction of thiol-ene click chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124175. https://doi.org/10.1016/j.colsurfa.2019.124175.

    Article  CAS  Google Scholar 

  102. Jiang, C., Liu, W., Yang, M., Liu, C., He, S., Xie, Y., et al. (2018). Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 235–242. https://doi.org/10.1016/j.colsurfa.2018.09.048.

    Article  CAS  Google Scholar 

  103. Lin, D., Zeng, X., Li, H., Lai, X., & Wu, T. (2019). One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. Journal of Colloid and Interface Science, 533, 198–206. https://doi.org/10.1016/j.jcis.2018.08.060.

    Article  CAS  Google Scholar 

  104. Singh, A. K., & Singh, J. K. (2019). An efficient use of waste PE for hydrophobic surface coating and its application on cotton fibers for oil-water separator. Progress in Organic Coatings, 131, 301–310. https://doi.org/10.1016/j.porgcoat.2019.02.025.

    Article  CAS  Google Scholar 

  105. He, T., Zhao, H., Liu, Y., Zhao, C., Wang, L., Wang, H., et al. (2020). Facile fabrication of superhydrophobic Titanium dioxide-composited cotton fabrics to realize oil-water separation with efficiently photocatalytic degradation for water-soluble pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124080. https://doi.org/10.1016/j.colsurfa.2019.124080.

    Article  CAS  Google Scholar 

  106. Deng, Y., Han, D., Deng, Y.-Y., Zhang, Q., Chen, F., & Fu, Q. (2020). Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation. Chemical Engineering Journal, 379, 122391. https://doi.org/10.1016/j.cej.2019.122391.

    Article  CAS  Google Scholar 

  107. Mizerska, U., Fortuniak, W., Makowski, T., Svyntkivska, M., Piorkowska, E., Kowalczyk, D., et al. (2019). Electrically conductive and hydrophobic rGO-containing organosilicon coating of cotton fabric. Progress in Organic Coatings, 137, 105312. https://doi.org/10.1016/j.porgcoat.2019.105312.

    Article  CAS  Google Scholar 

  108. Zheng, L., Su, X., Lai, X., Chen, W., Li, H., & Zeng, X. (2019). Conductive superhydrophobic cotton fabrics via layer-by-layer assembly of carbon nanotubes for oil-water separation and human motion detection. Materials Letters, 253, 230–233. https://doi.org/10.1016/j.matlet.2019.06.078.

    Article  CAS  Google Scholar 

  109. Li, S., Lin, X., Li, Z., & Ren, X. (2019). Hybrid organic-inorganic hydrophobic and intumescent flame-retardant coating for cotton fabrics. Composites Communications, 14, 15–20. https://doi.org/10.1016/j.coco.2019.05.005.

    Article  Google Scholar 

  110. Fu, J., Yang, F., Chen, G., Zhang, G., Huang, C., & Guo, Z. (2019). A facile coating with water-repellent and flame-retardant properties on cotton fabric. New Journal of Chemistry, 43, 10183–10189. https://doi.org/10.1039/c9nj02240f.

    Article  CAS  Google Scholar 

  111. Cho, S. C., Hong, Y. C., Cho, S. G., Ji, Y. Y., Han, C. S., & Uhm, H. S. (2009). Surface modification of polyimide films, filter papers, and cotton clothes by HMDSO/toluene plasma at low pressure and its wettability. Current Applied Physics, 9, 1223–1226. https://doi.org/10.1016/j.cap.2009.01.020.

    Article  Google Scholar 

  112. Liu, Y., Liu, Y., Hu, H., Liu, Z., Pei, X., Yu, B., et al. (2015). Mechanically induced self-healing superhydrophobicity. The Journal of Physical Chemistry C, 119, 7109–7114. https://doi.org/10.1021/jp5120493.

    Article  CAS  Google Scholar 

  113. Gu, S., Yang, L., Huang, W., Bu, Y., Chen, D., Huang, J., et al. (2017). Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry. Cellulose, 24, 2635–2646. https://doi.org/10.1007/s10570-017-1274-1.

    Article  CAS  Google Scholar 

  114. Yu, Y., Wang, Q., Yuan, J., Fan, X., Wang, P., & Cui, L. (2016). Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting. Carbohydrate Polymers, 137, 549–555. https://doi.org/10.1016/j.carbpol.2015.11.026.

    Article  CAS  Google Scholar 

  115. Dan, Z., Guolin, Z., Chuang, Z., Yuhe, W., & Zhu, L. (2019). Preparation and characterization of wear-resistant superhydrophobic cotton fabrics. Progress in Organic Coatings, 134, 226–233. https://doi.org/10.1016/j.porgcoat.2019.04.070.

    Article  CAS  Google Scholar 

  116. Liu, Y., Pei, X., Liu, Z., Yu, B., Yan, P., & Zhou, F. (2015). Accelerating the healing of superhydrophobicity through photothermogenesis. Journal of Materials Chemistry A, 3, 17074–17079. https://doi.org/10.1039/c5ta04252f.

    Article  CAS  Google Scholar 

  117. Bastos, A. R., Pereira da Silva, L., Gomes, V. P., Lopes, P. E., Rodrigues, L. C., Reis, R. L., et al. (2019). Electroactive polyamide/cotton fabrics for biomedical applications. Organic Electronics, 105401. https://doi.org/10.1016/j.orgel.2019.105401.

  118. Wu, J. D., Zhang, C., Jiang, D. J., Zhao, S. F., Jiang, Y. L., Cai, G. Q., et al. (2016). Self-cleaning pH/thermo-responsive cotton fabric with smart-control and reusable functions for oil/water separation. RSC Advances, 6, 24076–24082. https://doi.org/10.1039/c6ra02252a.

    Article  CAS  Google Scholar 

  119. Liang, L., Dong, Y., Wang, H., & Meng, X. (2019). Smart cotton fabric with CO2-responsive wettability for controlled oil/water separation. Advanced Fiber Materials, 1, 222–230. https://doi.org/10.1007/s42765-019-00018-7.

    Article  Google Scholar 

  120. Li, Y., Zhang, Y., Zou, C., & Shao, J. (2015). Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates. Applied Surface Science, 357, 2327–2332. https://doi.org/10.1016/j.apsusc.2015.09.236.

    Article  CAS  Google Scholar 

  121. Wang, L., Xi, G. H., Wan, S. J., Zhao, C. H., & Liu, X. D. (2014). Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose, 21, 2983–2994. https://doi.org/10.1007/s10570-014-0275-6.

    Article  CAS  Google Scholar 

  122. Attia, N. F., Moussa, M., Sheta, A. M. F., Taha, R., & Gamal, H. (2017). Effect of different nanoparticles based coating on the performance of textile properties. Progress in Organic Coatings, 104, 72–80. https://doi.org/10.1016/j.porgcoat.2016.12.007.

    Article  CAS  Google Scholar 

  123. Sasaki, K., Tenjimbayashi, M., Manabe, K., & Shiratori, S. (2016). Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces, 8, 651–659. https://doi.org/10.1021/acsami.5b09782.

    Article  CAS  Google Scholar 

  124. Xu, Q., Shen, L., Duan, P., Zhang, L., Fu, F., & Liu, X. (2020). Superhydrophobic cotton fabric with excellent healability fabricated by the “grafting to” method using a diblock copolymer mist. Chemical Engineering Journal, 379, 122401. https://doi.org/10.1016/j.cej.2019.122401.

    Article  CAS  Google Scholar 

  125. García, B., Saiz-Poseu, J., Gras-Charles, R., Hernando, J., Alibés, R., Novio, F., et al. (2014). Mussel-Inspired hydrophobic coatings for water-repellent textiles and oil removal. ACS Applied Materials & Interfaces, 6, 17616–17625. https://doi.org/10.1021/am503733d.

    Article  CAS  Google Scholar 

  126. Tissera, N. D., Wijesena, R. N., Perera, J. R., de Silva, K. M. N., & Amaratunge, G. A. J. (2015). Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Applied Surface Science, 324, 455–463. https://doi.org/10.1016/j.apsusc.2014.10.148.

    Article  CAS  Google Scholar 

  127. Attia, N. F., Moussa, M., Sheta, A. M. F., Taha, R., & Gamal, H. (2017). Synthesis of effective multifunctional textile based on silica nanoparticles. Progress in Organic Coatings, 106, 41–49. https://doi.org/10.1016/j.porgcoat.2017.02.006.

    Article  CAS  Google Scholar 

  128. Rana, M., Hao, B., Mu, L., Chen, L., & Ma, P.-C. (2016). Development of multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Composites Science and Technology, 122, 104–112. https://doi.org/10.1016/j.compscitech.2015.11.016.

    Article  CAS  Google Scholar 

  129. Caschera, D., Mezzi, A., Cerri, L., de Caro, T., Riccucci, C., Ingo, G. M., et al. (2014). Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose, 21, 741–756. https://doi.org/10.1007/s10570-013-0123-0.

    Article  CAS  Google Scholar 

  130. Zhou, P., Lv, J., Xu, H., Wang, X., Sui, X., Zhong, Y., et al. (2019). Functionalization of cotton fabric with bismuth oxyiodide nanosheets: Applications for photodegrading organic pollutants, UV shielding and self-cleaning. Cellulose, 26. https://doi.org/10.1007/s10570-019-02281-8.

  131. Li, Y., Yu, Q., Yin, X., Xu, J., Cai, Y., Han, L., et al. (2018). Fabrication of superhydrophobic and superoleophilic polybenzoxazine-based cotton fabric for oil–water separation. Cellulose, 25, 6691–6704. https://doi.org/10.1007/s10570-018-2024-8.

    Article  CAS  Google Scholar 

  132. Cheng, Q.-Y., Zhao, X.-L., Li, Y.-D., Weng, Y.-X., & Zeng, J.-B. (2019). Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation. International Journal of Biological Macromolecules, 140, 1175–1182. https://doi.org/10.1016/j.ijbiomac.2019.08.216.

    Article  CAS  Google Scholar 

  133. Cheng, Q.-Y., Liu, M.-C., Li, Y.-D., Zhu, J., Du, A.-K., & Zeng, J.-B. (2018). Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation. Polymer Testing, 66, 41–47. https://doi.org/10.1016/j.polymertesting.2018.01.005.

    Article  CAS  Google Scholar 

  134. Sobhana, S. S. L., Zhang, X., Kesavan, L., Liias, P., & Fardim, P. (2017). Layered double hydroxide interfaced stearic acid—Cellulose fibres: A new class of super-hydrophobic hybrid materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 416–424. https://doi.org/10.1016/j.colsurfa.2017.03.025.

    Article  CAS  Google Scholar 

  135. He, Y., Wan, M., Wang, Z., Zhang, X., Zhao, Y., & Sun, L. (2019). Fabrication and characterization of degradable and durable fluoride-free super-hydrophobic cotton fabrics for oil/water separation. Surface & Coatings Technology, 378, 125079. https://doi.org/10.1016/j.surfcoat.2019.125079.

    Article  CAS  Google Scholar 

  136. Janhom, S. (2019). Effect of consecutive SiCl4 and hydrophobic molecule modification of cotton cloth for fresh oils and used oils removal. Journal of Environmental Chemical Engineering, 7, 103120. https://doi.org/10.1016/j.jece.2019.103120.

    Article  CAS  Google Scholar 

  137. Zhou, Q., Yan, B., Xing, T., & Chen, G. (2019). Fabrication of superhydrophobic caffeic acid/Fe@cotton fabric and its oil-water separation performance. Carbohydrate Polymers, 203, 1–9. https://doi.org/10.1016/j.carbpol.2018.09.025.

    Article  CAS  Google Scholar 

  138. Yu, M., Gu, G., Meng, W.-D., & Qing, F.-L. (2007). Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Applied Surface Science, 253, 3669–3673. https://doi.org/10.1016/j.apsusc.2006.07.086.

    Article  CAS  Google Scholar 

  139. Zhang, M., & Wang, C. (2013). Fabrication of cotton fabric with superhydrophobicity and flame retardancy. Carbohydrate Polymers, 96, 396–402. https://doi.org/10.1016/j.carbpol.2013.04.025.

    Article  CAS  Google Scholar 

  140. Wu, H., Noro, J., Wang, Q., Fan, X., Silva, C., & Cavaco-Paulo, A. (2016). Jute hydrophobization via laccase-catalyzed grafting of fluorophenol and fluoroamine. RSC Advances, 6, 90427–90434. https://doi.org/10.1039/C6RA17687A.

    Article  CAS  Google Scholar 

  141. Russell, M. H., Nilsson, H., & Buck, R. C. (2013). Elimination kinetics of perfluorohexanoic acid in humans and comparison with mouse, rat and monkey. Chemosphere, 93, 2419–2425. https://doi.org/10.1016/j.chemosphere.2013.08.060.

    Article  CAS  Google Scholar 

  142. Freberg, B. I., Haug, L. S., Olsen, R., Daae, H. L., Hersson, M., Thomsen, C., et al. (2010). Occupational exposure to airborne perfluorinated compounds during professional ski waxing. Environmental Science and Technology, 44, 7723–7728. https://doi.org/10.1021/es102033k.

    Article  CAS  Google Scholar 

  143. Cai, R., Glinel, K., De Smet, D., Vanneste, M., Mannu, N., Kartheuser, B., et al. (2018). environmentally friendly super-water-repellent fabrics prepared from water-based suspensions. ACS Applied Materials & Interfaces, 10, 15346–15351. https://doi.org/10.1021/acsami.8b02707.

    Article  CAS  Google Scholar 

  144. Jeyasubramanian, K., Hikku, G. S., Preethi, A. V. M., Benitha, V. S., & Selvakumar, N. (2016). Fabrication of water repellent cotton fabric by coating nano particle impregnated hydrophobic additives and its characterization. Journal of Industrial and Engineering Chemistry, 37, 180–189. https://doi.org/10.1016/j.jiec.2016.03.023.

    Article  CAS  Google Scholar 

  145. Tran Thi, V. H., & Lee, B.-K. (2017). Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. Journal of Photochemistry and Photobiology A: Chemistry, 338, 13–22. https://doi.org/10.1016/j.jphotochem.2017.01.020.

    Article  CAS  Google Scholar 

  146. Huang, T., Li, D., & Ek, M. (2018). Water repellency improvement of cellulosic textile fibers by betulin and a betulin-based copolymer. Cellulose, 25, 2115–2128. https://doi.org/10.1007/s10570-018-1695-5.

    Article  CAS  Google Scholar 

  147. Gore, P. M., & Kandasubramanian, B. (2018). Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. Journal of Materials Chemistry A, 6, 7457–7479. https://doi.org/10.1039/C7TA11260B.

    Article  CAS  Google Scholar 

  148. Chen, S., Li, X., Li, Y., & Sun, J. (2015). Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano, 9, 4070–4076. https://doi.org/10.1021/acsnano.5b00121.

    Article  CAS  Google Scholar 

  149. Ghanbari, D., Salavati-Niasari, M., Esmaeili-Zare, M., Jamshidi, P., & Akhtarianfar, F. (2014). Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. Journal of Industrial and Engineering Chemistry, 20, 3709–3713. https://doi.org/10.1016/j.jiec.2013.12.070.

    Article  CAS  Google Scholar 

  150. Ghoranneviss, M., & Shahidi, S. (2014). Flame retardant properties of plasma pretreated/metallic salt loaded cotton fabric before and after direct dyeing. Journal of Fusion Energy, 33, 119–124. https://doi.org/10.1007/s10894-013-9642-9.

    Article  CAS  Google Scholar 

  151. Li, Y.-C., Schulz, J., Mannen, S., Delhom, C., Condon, B., Chang, S., et al. (2010). Flame retardant behavior of polyelectrolyte−clay thin film assemblies on cotton fabric. ACS Nano, 4, 3325–3337. https://doi.org/10.1021/nn100467e.

    Article  CAS  Google Scholar 

  152. Li, X., Chen, H., Wang, W., Liu, Y., & Zhao, P. (2015). Synthesis of a formaldehyde-free phosphorus–nitrogen flame retardant with multiple reactive groups and its application in cotton fabrics. Polymer Degradation and Stability, 120, 193–202. https://doi.org/10.1016/j.polymdegradstab.2015.07.003.

    Article  CAS  Google Scholar 

  153. Lu, S.-Y., & Hamerton, I. (2002). Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science, 27, 1661–1712. https://doi.org/10.1016/S0079-6700(02)00018-7.

    Article  CAS  Google Scholar 

  154. Salmeia, K. A., Gaan, S., & Malucelli, G. (2016). Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers, 8, 319.

    Article  Google Scholar 

  155. Alongi, J., Ciobanu, M., & Malucelli, G. (2011). Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol–gel processes. Carbohydrate Polymers, 85, 599–608. https://doi.org/10.1016/j.carbpol.2011.03.024.

    Article  CAS  Google Scholar 

  156. Costes, L., Laoutid, F., Brohez, S., & Dubois, P. (2017). Bio-based flame retardants: When nature meets fire protection. Materials Science and Engineering: R: Reports, 117, 1–25. https://doi.org/10.1016/j.mser.2017.04.001.

    Article  Google Scholar 

  157. Dong, C., Lu, Z., Zhang, F., Zhu, P., Wang, P., Che, Y., et al. (2016). Combustion behaviors of cotton fabrics treated by a novel nitrogen- and phosphorus-containing polysiloxane flame retardant. Journal of Thermal Analysis and Calorimetry, 123, 535–544. https://doi.org/10.1007/s10973-015-4914-4.

    Article  CAS  Google Scholar 

  158. Qiu, X., Li, Z., Li, X., & Zhang, Z. (2018). Flame retardant coatings prepared using layer by layer assembly: A review. Chemical Engineering Journal, 334, 108–122. https://doi.org/10.1016/j.cej.2017.09.194.

    Article  CAS  Google Scholar 

  159. Yang, H., & Yang, C. Q. (2005). Durable flame retardant finishing of the nylon/cotton blend fabric using a hydroxyl-functional organophosphorus oligomer. Polymer Degradation and Stability, 88, 363–370. https://doi.org/10.1016/j.polymdegradstab.2004.11.013.

    Article  CAS  Google Scholar 

  160. Alongi, J., & Malucelli, G. (2015). Cotton flame retardancy: state of the art and future perspectives. RSC Advances, 5, 24239–24263. https://doi.org/10.1039/C5RA01176K.

    Article  CAS  Google Scholar 

  161. Xie, K., Gao, A., & Zhang, Y. (2013). Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydrate Polymers, 98, 706–710. https://doi.org/10.1016/j.carbpol.2013.06.014.

    Article  CAS  Google Scholar 

  162. Nguyen, T.-M. D., Chang, S., Condon, B., Uchimiya, M., & Fortier, C. (2012). Development of an environmentally friendly halogen-free phosphorus–nitrogen bond flame retardant for cotton fabrics. Polymers for Advanced Technologies, 23, 1555–1563. https://doi.org/10.1002/pat.3029.

    Article  CAS  Google Scholar 

  163. Alongi, J., Carletto, R. A., Di Blasio, A., Cuttica, F., Carosio, F., Bosco, F., et al. (2013). Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics. Carbohydrate Polymers, 96, 296–304. https://doi.org/10.1016/j.carbpol.2013.03.066.

    Article  CAS  Google Scholar 

  164. Alongi, J., Milnes, J., Malucelli, G., Bourbigot, S., & Kandola, B. (2014). Thermal degradation of DNA-treated cotton fabrics under different heating conditions. Journal of Analytical and Applied Pyrolysis, 108, 212–221. https://doi.org/10.1016/j.jaap.2014.04.014.

    Article  CAS  Google Scholar 

  165. Zheng, D., Zhou, J., Zhong, L., Zhang, F., & Zhang, G. (2016). A novel durable and high-phosphorous-containing flame retardant for cotton fabrics. Cellulose, 23, 2211–2220. https://doi.org/10.1007/s10570-016-0949-3.

    Article  CAS  Google Scholar 

  166. Jia, Y., Lu, Y., Zhang, G., Liang, Y., & Zhang, F. (2017). Facile synthesis of an eco-friendly nitrogen–phosphorus ammonium salt to enhance the durability and flame retardancy of cotton. Journal of Materials Chemistry A, 5, 9970–9981. https://doi.org/10.1039/C7TA01106G.

    Article  CAS  Google Scholar 

  167. Wang, D., Zhong, L., Zhang, C., Zhang, F., & Zhang, G. (2018). A novel reactive phosphorous flame retardant for cotton fabrics with durable flame retardancy and high whiteness due to self-buffering. Cellulose, 25, 5479–5497. https://doi.org/10.1007/s10570-018-1964-3.

    Article  CAS  Google Scholar 

  168. Tian, P., Lu, Y., Wang, D., Zhang, G., & Zhang, F. (2019). Synthesis of a new N-P durable flame retardant for cotton fabrics. Polymer Degradation and Stability, 165, 220–228. https://doi.org/10.1016/j.polymdegradstab.2019.04.024.

    Article  CAS  Google Scholar 

  169. Feng, Y., Zhou, Y., Li, D., He, S., Zhang, F., & Zhang, G. (2017). A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohydrate Polymers, 175, 636–644. https://doi.org/10.1016/j.carbpol.2017.06.129.

    Article  CAS  Google Scholar 

  170. Huang, S., Feng, Y., Li, S., Zhou, Y., Zhang, F., & Zhang, G. (2019). A novel high whiteness flame retardant for cotton. Polymer Degradation and Stability, 164, 157–166. https://doi.org/10.1016/j.polymdegradstab.2019.03.014.

    Article  CAS  Google Scholar 

  171. Gao, D., Zhang, Y., Lyu, B., Wang, P., & Ma, J. (2019). Nanocomposite based on poly(acrylic acid)/ attapulgite towards flame retardant of cotton fabrics. Carbohydrate Polymers, 206, 245–253. https://doi.org/10.1016/j.carbpol.2018.10.113.

    Article  CAS  Google Scholar 

  172. Dutkiewicz, M., Przybylak, M., Januszewski, R., & Maciejewski, H. (2018). Synthesis and flame retardant efficacy of hexakis(3-(triethoxysilyl)propyloxy)cyclotriphosphazene/silica coatings for cotton fabrics. Polymer Degradation and Stability, 148, 10–18. https://doi.org/10.1016/j.polymdegradstab.2017.11.018.

    Article  CAS  Google Scholar 

  173. Abkenar, S. S., Malek, R. M. A., & Mazaheri, F. (2013). Thermal properties of cotton fabric modified with poly (propylene imine) dendrimers. Cellulose, 20, 3079–3091. https://doi.org/10.1007/s10570-013-0059-4.

    Article  CAS  Google Scholar 

  174. Taherkhani, A., & Hasanzadeh, M. (2018). Durable flame retardant finishing of cotton fabrics with poly(amidoamine) dendrimer using citric acid. Materials Chemistry and Physics, 219, 425–432. https://doi.org/10.1016/j.matchemphys.2018.08.058.

    Article  CAS  Google Scholar 

  175. Alongi, J., Ciobanu, M., Tata, J., Carosio, F., & Malucelli, G. (2011). Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments. Journal of Applied Polymer Science, 119, 1961–1969. https://doi.org/10.1002/app.32954.

    Article  CAS  Google Scholar 

  176. Saleemi, S., Naveed, T., Riaz, T., Memon, H., Awan, J. A., Siyal, M. I., et al. (2020). Surface functionalization of cotton and PC fabrics using SiO2 and ZnO nanoparticles for durable flame retardant properties. Coatings, 10, 124. https://doi.org/10.3390/coatings10020124.

    Article  CAS  Google Scholar 

  177. Lam, Y. L., Kan, C. W., & Yuen, C. W. M. (2011). Flame-retardant finishing in cotton fabrics using zinc oxide co-catalyst. Journal of Applied Polymer Science, 121, 612–621. https://doi.org/10.1002/app.33738.

    Article  CAS  Google Scholar 

  178. Guido, E., Colleoni, C., De Clerck, K., Plutino, M. R., & Rosace, G. (2014). Influence of catalyst in the synthesis of a cellulose-based sensor: Kinetic study of 3-glycidoxypropyltrimethoxysilane epoxy ring opening by Lewis acid. Sensors and Actuators B: Chemical, 203, 213–222. https://doi.org/10.1016/j.snb.2014.06.126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishaq Lugoloobi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lugoloobi, I., Memon, H., Akampumuza, O., Balilonda, A. (2020). Advanced Physical Applications of Modified Cotton. In: Wang, H., Memon, H. (eds) Cotton Science and Processing Technology. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9169-3_18

Download citation

Publish with us

Policies and ethics