Skip to main content
Log in

Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Highly hydrophobic cotton fabrics were fabricated via coordination assembly of tannic acid (TA) and Fe(III) followed by treatment with 1-octadecylamine. Scanning electron microscopy analysis showed that this novel Fe(III)/TA metalorganic system coated the cotton fabrics and affected the surface roughness, making the textiles hydrophobic. This approach is facile and low cost without substrate limitation or addition of fluorinated chemicals. Wettability tests showed that the highly hydrophobic textiles were robustly resistant to acid, alkaline, and salt corrosion and long-term laundering. In addition, the obtained highly hydrophobic surface could effectively separate oil–water mixtures by simple filtration. The simplicity and versatility of this direct approach inspired by polyphenol chemistry may facilitate fast development of functional textiles for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bao X-M et al (2014) Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles. Appl Surf Sci 303:473–480. doi:10.1016/j.apsusc.2014.03.029

    Article  CAS  Google Scholar 

  • Cakir M, Kartal I, Yildiz Z (2014) The preparation of UV-cured superhydrophobic cotton fabric surfaces by electrospinning method. Text Res J 84:1528–1538. doi:10.1177/0040517514525883

    Article  Google Scholar 

  • Caschera D et al (2014) Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose 21:741–756. doi:10.1007/s10570-013-0123-0

    Article  CAS  Google Scholar 

  • Cengiz U, Erbil HY (2014) Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent. Appl Surf Sci 292:591–597. doi:10.1016/j.apsusc.2013.12.013

    Article  CAS  Google Scholar 

  • Chen D, Chen F, Zhang H, Yin X, Zhou Y (2016a) Preparation and characterization of novel hydrophobic cellulose fabrics with polyvinylsilsesquioxane functional coatings. Cellulose 23:941–953. doi:10.1007/s10570-015-0820-y

    Article  CAS  Google Scholar 

  • Chen F et al (2016b) A simple one-step approach to fabrication of highly hydrophobic silk fabrics. Appl Surf Sci 360(Part A):207–212. doi:10.1016/j.apsusc.2015.10.186

    CAS  Google Scholar 

  • Chu Z, Seeger S (2015) Robust superhydrophobic wood obtained by spraying silicone nanoparticles. RSC Adv 5:21999–22004. doi:10.1039/C4RA13794A

    Article  CAS  Google Scholar 

  • Das C, Jain B, Krishnamoorthy K (2015) Phenols from green tea as a dual functional coating to prepare devices for energy storage and molecular separation. Chem Commun 51:11662–11664. doi:10.1039/C5CC03108G

    Article  CAS  Google Scholar 

  • Duan W, Xie A, Shen Y, Wang X, Wang F, Zhang Y, Li J (2011) Fabrication of superhydrophobic cotton fabrics with UV protection based on CeO2 particles. Ind Eng Chem Res 50:4441–4445. doi:10.1021/ie101924v

    Article  CAS  Google Scholar 

  • Ejima H et al (2013) One-step assembly of coordination complexes for versatile film and particle engineering. Science 341:154–157

    Article  CAS  Google Scholar 

  • Gao Q et al (2016) Preparation and characterization of superhydrophobic organic-inorganic hybrid cotton fabrics via γ-radiation-induced graft polymerization. Carbohydr Polym 149:308–316. doi:10.1016/j.carbpol.2016.04.124

    Article  CAS  Google Scholar 

  • Gashti MP, Rashidian R, Almasian A, Zohouri AB (2013) A novel method for colouration of cotton using clay nano-adsorbent treatment. Pigm Resin Technol 42:175–185. doi:10.1108/03699421311317343

    Article  CAS  Google Scholar 

  • Ge D, Yang L, Wu G, Yang S (2014) Spray coating of superhydrophobic and angle-independent coloured films. Chem Commun 50:2469–2472. doi:10.1039/C3CC48962K

    Article  CAS  Google Scholar 

  • Guo J et al (2014) Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem 126:5652–5657. doi:10.1002/ange.201311136

    Article  Google Scholar 

  • Hong D, Bae K, Hong S-P, Park JH, Choi IS, Cho WK (2014) Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chem Commun 50:11649–11652. doi:10.1039/C4CC02775B

    Article  CAS  Google Scholar 

  • Huang JY et al (2015a) Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. J Mater Chem A 3:2825–2832. doi:10.1039/C4TA05332J

    Article  CAS  Google Scholar 

  • Huang S, Li X, Jiao Y, Shi J (2015b) Fabrication of a superhydrophobic, fire-resistant, and mechanical robust sponge upon polyphenol chemistry for efficiently absorbing oils/organic solvents. Ind Eng Chem Res 54:1842–1848. doi:10.1021/ie504812p

    Article  CAS  Google Scholar 

  • Huang Y, Sarkar DK, Chen XG (2015c) Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process. Appl Surf Sci 327:327–334. doi:10.1016/j.apsusc.2014.11.170

    Article  CAS  Google Scholar 

  • Jeon J-R, Kim J-H, Chang Y-S (2013) Enzymatic polymerization of plant-derived phenols for material-independent and multifunctional coating. J Mater Chem B 1:6501–6509. doi:10.1039/C3TB21161D

    Article  CAS  Google Scholar 

  • Joung YS, Buie CR (2015) Antiwetting fabric produced by a combination of layer-by-layer assembly and electrophoretic deposition of hydrophobic nanoparticles. ACS Appl Mater Interfaces 7:20100–20110. doi:10.1021/acsami.5b05233

    Article  CAS  Google Scholar 

  • Krogsgaard M, Nue V, Birkedal H (2016) Mussel-inspired materials: self-healing through coordination chemistry. Chem Eur J 22:844–857. doi:10.1002/chem.201503380

    Article  CAS  Google Scholar 

  • Kwon S-O, Ko T-J, Yu E, Kim J, Moon M-W, Park CH (2014) Nanostructured self-cleaning lyocell fabrics with asymmetric wettability and moisture absorbency (part I). RSC Adv 4:45442–45448. doi:10.1039/C4RA08039D

    Article  CAS  Google Scholar 

  • Lai Y, Tang Y, Gong J, Gong D, Chi L, Lin C, Chen Z (2012) Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J Mater Chem 22:7420–7426. doi:10.1039/C2JM16298A

    Article  CAS  Google Scholar 

  • Lee M, Kwak G, Yong K (2011) Wettability control of ZnO nanoparticles for universal applications. ACS Appl Mater Interfaces 3:3350–3356. doi:10.1021/am2004762

    Article  CAS  Google Scholar 

  • Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590. doi:10.1021/la800157t

    Article  CAS  Google Scholar 

  • Li K, Zeng X, Li H, Lai X, Xie H (2014) Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil. Mater Lett 120:255–258. doi:10.1016/j.matlet.2014.01.105

    Article  CAS  Google Scholar 

  • Li J, Yan L, Zhao Y, Zha F, Wang Q, Lei Z (2015a) One-step fabrication of robust fabrics with both-faced superhydrophobicity for the separation and capture of oil from water. Phys Chem Chem Phys 17:6451–6457. doi:10.1039/C5CP00154D

    Article  CAS  Google Scholar 

  • Li S et al (2015b) Robust flower-like TiO2@cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation. Adv Mater Interfaces. doi:10.1002/admi.201500220

    Google Scholar 

  • Li SH et al (2015c) Controlled grafting superhydrophobic cellulose surface with environmentally-friendly short fluoroalkyl chains by ATRP. Mater Des 85:815–822. doi:10.1016/j.matdes.2015.07.083

    Article  CAS  Google Scholar 

  • Li Y, Ge B, Men X, Zhang Z, Xue Q (2016) A facile and fast approach to mechanically stable and rapid self-healing waterproof fabrics. Compos Sci Technol 125:55–61. doi:10.1016/j.compscitech.2016.01.021

    Article  CAS  Google Scholar 

  • Liang J, Zhou Y, Jiang G, Wang R, Wang X, Hu R, Xi X (2013) Transformation of hydrophilic cotton fabrics into superhydrophobic surfaces for oil/water separation. J Text Inst 104:305–311. doi:10.1080/00405000.2012.721207

    Article  CAS  Google Scholar 

  • Limaye MV et al (2012) On the role of tannins and iron in the Bogolan or mud cloth dyeing process. Text Res J 82:1888–1896. doi:10.1177/0040517512452955

    Article  Google Scholar 

  • Lin J, Zheng C, Ye W, Wang H, Feng D, Li Q, Huan B (2015) A facile dip-coating approach to prepare SiO2/fluoropolymer coating for superhydrophobic and superoleophobic fabrics with self-cleaning property. J Appl Polym Sci. doi:10.1002/app.41458

    Google Scholar 

  • Liu Y, Xin JH, Choi C-H (2012) Cotton fabrics with single-faced superhydrophobicity. Langmuir 28:17426–17434. doi:10.1021/la303714h

    Article  CAS  Google Scholar 

  • Liu F, Ma M, Zang D, Gao Z, Wang C (2014a) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487. doi:10.1016/j.carbpol.2013.12.022

    Article  CAS  Google Scholar 

  • Liu Y, Ai K, Lu L (2014b) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. doi:10.1021/cr400407a

    Article  CAS  Google Scholar 

  • Liu Y et al (2015) One-step modification of fabrics with bioinspired polydopamine@octadecylamine nanocapsules for robust and healable self-cleaning performance. Small 11:426–431. doi:10.1002/smll.201402383

    Article  CAS  Google Scholar 

  • Liu H et al (2016) Recent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials 9:124. doi:10.3390/ma9030124

    Article  Google Scholar 

  • Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347:1132–1135. doi:10.1126/science.aaa0946

    Article  CAS  Google Scholar 

  • Ma J, Zhang X, Bao Y, Liu J (2015) A facile spraying method for fabricating superhydrophobic leather coating. Colloids Surf A 472:21–25. doi:10.1016/j.colsurfa.2015.02.019

    Article  CAS  Google Scholar 

  • Manatunga DC, de Silva RM, de Silva KMN (2016) Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Appl Surf Sci 360(Part B):777–788. doi:10.1016/j.apsusc.2015.11.068

    Article  CAS  Google Scholar 

  • Moiz A, Vijayan A, Padhye R, Wang X (2016) Chemical and water protective surface on cotton fabric by pad-knife-pad coating of WPU-PDMS-TMS. Cellulose 23:3377–3388. doi:10.1007/s10570-016-1028-5

    Article  CAS  Google Scholar 

  • Pranantyo D, Xu LQ, Neoh K-G, Kang E-T, Ng YX, Teo SL-M (2015) Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings. Biomacromolecules 16:723–732. doi:10.1021/bm501623c

    Article  CAS  Google Scholar 

  • Pranantyo D, Xu LQ, Neoh KG, Kang E-T, Teo SL-M (2016) Antifouling coatings via tethering of hyperbranched polyglycerols on biomimetic anchors. Ind Eng Chem Res 55:1890–1901. doi:10.1021/acs.iecr.5b03735

    Article  CAS  Google Scholar 

  • Rahim MA, Ejima H, Cho KL, Kempe K, Müllner M, Best JP, Caruso F (2014) Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem Mater 26:1645–1653. doi:10.1021/cm403903m

    Article  CAS  Google Scholar 

  • Sasaki K, Tenjimbayashi M, Manabe K, Shiratori S (2016) Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Appl Mater Interfaces 8:651–659. doi:10.1021/acsami.5b09782

    Article  CAS  Google Scholar 

  • Shutava T, Prouty M, Kommireddy D, Lvov Y (2005) pH responsive decomposable layer-by-layer nanofilms and capsules on the basis of tannic acid. Macromolecules 38:2850–2858. doi:10.1021/ma047629x

    Article  CAS  Google Scholar 

  • Sileika TS, Barrett DG, Zhang R, Lau KHA, Messersmith PB (2013) Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem Int Ed 52:10766–10770. doi:10.1002/anie.201304922

    Article  CAS  Google Scholar 

  • Teisala H, Tuominen M, Kuusipalo J (2014) Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications. Adv Mater Interfaces. doi:10.1002/admi.201300026

    Google Scholar 

  • Vasiljević J, Zorko M, Tomšič B, Jerman I, Simončič B (2016) Fabrication of the hierarchically roughened bumpy-surface topography for the long-lasting highly oleophobic “lotus effect” on cotton fibres. Cellulose 23:3301–3318. doi:10.1007/s10570-016-1007-x

    Article  Google Scholar 

  • Wang J, Chen Y (2015) Oil–water separation capability of superhydrophobic fabrics fabricated via combining polydopamine adhesion with lotus-leaf-like structure. J Appl Polym Sci 132:355–365. doi:10.1002/app.42614

    Google Scholar 

  • Wang H et al (2008) One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem Commun 7:877–879. doi:10.1039/B714352D

    Article  Google Scholar 

  • Wang H, Ding J, Xue Y, Wang X, Lin T (2010) Superhydrophobic fabrics from hybrid silica sol-gel coatings: Structural effect of precursors on wettability and washing durability. J Mater Res 25:1336–1343. doi:10.1557/JMR.2010.0169

    Article  CAS  Google Scholar 

  • Wang B et al (2013) Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation. ACS Appl Mater Interfaces 5:1827–1839. doi:10.1021/am303176a

    Article  CAS  Google Scholar 

  • Wang L, Xi GH, Wan SJ, Zhao CH, Liu XD (2014) Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21:2983–2994. doi:10.1007/s10570-014-0275-6

    Article  CAS  Google Scholar 

  • Xi G, Fan W, Wang L, Liu X, Endo T (2015) Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2-trifluoroethyl methacrylate. J Polym Sci Part A Polym Chem 53:1862–1871. doi:10.1002/pola.27632

    Article  CAS  Google Scholar 

  • Xiao X, Cao G, Chen F, Tang Y, Liu X, Xu W (2015) Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition. Appl Surf Sci 349:876–879. doi:10.1016/j.apsusc.2015.05.061

    Article  CAS  Google Scholar 

  • Xu G, Pranantyo D, Zhang B, Xu L, Neoh K-G, Kang E-T (2016a) Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings. RSC Adv 6:14809–14818. doi:10.1039/c5ra23374g

    Article  CAS  Google Scholar 

  • Xu ZL, Miyazaki K, Hori T (2016b) Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning. Appl Surf Sci 370:243–251. doi:10.1016/j.apsusc.2016.02.135

    Article  CAS  Google Scholar 

  • Xue CH, Ji XQ, Zhang J, Ma JZ, Jia ST (2015) Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating. Nanotechnology 26:335602

    Article  Google Scholar 

  • Yang L, Han L, Ren J, Wei H, Jia L (2015) Coating process and stability of metal-polyphenol film. Colloids Surf A Physicochem Eng Asp 484:197–205

    Article  CAS  Google Scholar 

  • Yazdanshenas ME, Shateri-Khalilabad M (2013) One-step synthesis of superhydrophobic coating on cotton fabric by ultrasound irradiation. Ind Eng Chem Res 52:12846–12854. doi:10.1021/ie401133q

    Article  CAS  Google Scholar 

  • Zeng C, Wang HX, Zhou H, Lin T (2015) Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Adv 5:61044–61050. doi:10.1039/c5ra08040a

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Shao J, Zou C (2015) Fabrication of superhydrophobic fluorine-free films on cotton fabrics through plasma-induced grafting polymerization of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane. Surf Coat Technol 276:16–22. doi:10.1016/j.surfcoat.2015.06.050

    Article  CAS  Google Scholar 

  • Zhao Y, Xu Z, Wang X, Lin T (2013) Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl Surf Sci 286:364–370. doi:10.1016/j.apsusc.2013.09.092

    Article  CAS  Google Scholar 

  • Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412. doi:10.1002/adma.201200184

    Article  CAS  Google Scholar 

  • Zhou H, Wang H, Niu H, Gestos A, Lin T (2013) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 23:1664–1670. doi:10.1002/adfm.201202030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Educational Commission of Hubei Province (Q20151606), National Natural Science Foundation of China (21202127), and the Foundation of Wuhan Textile University (no. 153028) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Huang or Weilin Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 4375 kb)

Supplementary material 2 (MP4 13,273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Yang, L., Huang, W. et al. Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry. Cellulose 24, 2635–2646 (2017). https://doi.org/10.1007/s10570-017-1274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1274-1

Keywords

Navigation