Skip to main content

Biomedical Application of Cotton and Its Derivatives

  • Chapter
  • First Online:
Cotton Science and Processing Technology

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

Cotton and its derivate are widely studied and used as a medical and biomedical product in the “Health care textile” aria. The cotton-based materials have been used in external (surgical clothing, surgical covers, and beddings) and internal (traditional and advanced wound dressing, tissue engineering, drug delivery, surgical area, and dental applications) application. For the use in the internal application, the biomaterials have to pass many in vitro and in vivo tests due to the final application. Cotton is used to cover the wound as a barrier for bacterial penetrate and keep the wound aria warm since 19 century. Due to different medical demands, the modification of cotton has been developed to meet the diverse requirements with different biomaterial applications. The cotton has unique properties such as high surface area, favorable mechanical property, gas permeability, cellulose fibers, etc. which makes it a good candidate for use in medical and biomedical applications. Nowadays, due to innovations, novel and ultra-modern biomaterials are available. The researchers are developing new functional cotton base biomaterials at an incredible rate. The health care textile aims to bring comfort and better treatment for patients in their painful days. The huge study has been physically and chemically modified the structure of cotton gauze. Chemical modifications such as etherification, oxidation, and phosphorylation of cotton gauze have been studied to develop wound dressing for different kinds of wounds. Cotton has the capability to deliver the drug in the wound area, which can be stimulation responsive or non-stimulation responsive. In the surgical application, the cotton is used as surgical sutures and cotton rolls. It has been widely used in tissue engineering and dental application also. This study aims to summarize the development of the biomedical use of cotton and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrulyte, S., Petrulis, D. (2011). Modern textiles and biomaterials for healthcare. In V. T. Bartels (Ed.), Handbook of medical textiles (pp. 1–35). Woodhead Publishing. https://doi.org/10.1533/9780857093691.1.3pp.

  2. Ahmed, F., Shaikh, I., Hussain, T., Ahmad, I., Munir, S., & Zameer, M. (2014). Developments in health care and medical Textiles—A mini review-1. Pakistan Journal of Nutrition, 13, 780–783. https://doi.org/10.3923/pjn.2014.780.783.

    Article  Google Scholar 

  3. Du, Y., Guo, J. L., Wang, J., Mikos, A. G., & Zhang, S. (2019). Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials, 218, 119334. https://doi.org/10.1016/j.biomaterials.2019.119334.

    Article  CAS  Google Scholar 

  4. Aramwit, P. (2016). Introduction to biomaterials for wound healing. In M. S. Ågren (Ed.), Wound healing biomaterials (pp. 3–38). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-456-7.00001-5pp.

  5. Ratner, B. D., & Bryant, S. J. (2004). Biomaterials: where we have been and where we are going. Annual Review of Biomedical Engineering, 6, 41–75. https://doi.org/10.1146/annurev.bioeng.6.040803.140027.

    Article  CAS  Google Scholar 

  6. Kulinets, I. (2015). Biomaterials and their applications in medicine. In S. F. Amato & R. M. Ezzell (Eds.), Regulatory affairs for biomaterials and medical devices (pp. 1–10). Woodhead Publishing. https://doi.org/10.1533/9780857099204.1pp.

  7. Li, G., Li, Y., Chen, G., He, J., Han, Y., Wang, X., et al. (2015). Silk-based biomaterials in biomedical textiles and fiber-based implants. Advanced Healthcare Materials, 4, 1134–1151. https://doi.org/10.1002/adhm.201500002.

    Article  CAS  Google Scholar 

  8. Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57, 397–430. https://doi.org/10.1002/pi.2378.

    Article  CAS  Google Scholar 

  9. Ananth, H., Kundapur, V., Mohammed, H. S., Anand, M., Amarnath, G. S., & Mankar, S. (2015). A Review on Biomaterials in Dental Implantology. International Journal of Biomedical Sciences, 11, 113–120.

    Google Scholar 

  10. Gobbi, S. J., Gobbi, V. J., & Rocha, Y. (2019). Requirements for selection/development of a biomaterial. Biomedical Journal of Scientific and Technical Research, 14.

    Google Scholar 

  11. Kolarsick, P., Kolarsick, M., & Goodwin, C. (2011). Anatomy and physiology of the skin. Journal of the Dermatology Nurses’ Association, 3, 203–213. https://doi.org/10.1097/JDN.0b013e3182274a98.

    Article  Google Scholar 

  12. Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews Microbiology, 9, 244–253. https://doi.org/10.1038/nrmicro2537.

    Article  CAS  Google Scholar 

  13. Romanovsky, A. A. (2014). Skin temperature: Its role in thermoregulation. Acta Psychologica, 210, 498–507. https://doi.org/10.1111/apha.12231.

    Article  CAS  Google Scholar 

  14. Nguyen, A. V., & Soulika, A. M. (2019). The dynamics of the skin’s immune system. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20081811.

  15. Filingeri, D. (2016). Neurophysiology of skin thermal sensations. Comprehensive Physiology, 6, 1429. https://doi.org/10.1002/cphy.c150040.

    Article  Google Scholar 

  16. Xu, T., Wang, W., Bian, X., Wang, X., Wang, X., Luo, J. K., et al. (2015). High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Scientific Reports, 5, 12997. https://doi.org/10.1038/srep12997.

    Article  CAS  Google Scholar 

  17. Mostafa, W. Z., & Hegazy, R. A. (2015). Vitamin D and the skin: Focus on a complex relationship: A review. Journal of Advanced Research, 6, 793–804. https://doi.org/10.1016/j.jare.2014.01.011.

    Article  CAS  Google Scholar 

  18. Anh, H. T. P., Huang, C.-M., & Huang, C.-J. (2019). Intelligent metal-phenolic metallogels as dressings for infected wounds. Scientific Reports, 9, 11562. https://doi.org/10.1038/s41598-019-47978-9.

    Article  CAS  Google Scholar 

  19. Irfan, M., Perero, S., Miola, M., Maina, G., Ferri, A., Ferraris, M., et al. (2017). Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose, 24, 2331–2345. https://doi.org/10.1007/s10570-017-1232-y.

    Article  CAS  Google Scholar 

  20. Uzun, M., Anand, S. C., & Shah, T. (2013). In vitro characterisation and evaluation of different types of wound dressing materials. Journal of Biomedical Engineering and Technology, 1, 1–7.

    Google Scholar 

  21. Hajimirzababa, H., Khajavi, R., Mirjalili, M., & KarimRahimi, M. (2018). Modified cotton gauze with nano-Ag decorated alginate microcapsules and chitosan loaded with PVP-I. The Journal of The Textile Institute, 109, 677–685. https://doi.org/10.1080/00405000.2017.1365398.

    Article  CAS  Google Scholar 

  22. Cowman, S., Gethin, G., Clarke, E., Moore, Z., Craig, G., Jordan-O’Brien, J., McLain, N., & Strapp, H. (2012). An international eDelphi study identifying the research and education priorities in wound management and tissue repair. Journal of Clinical Nursing, 21, 344–353. https://doi.org/10.1111/j.1365-2702.2011.03950.x.

  23. Uzun, M. (2018). Review of wound management materials. Conference proceedings.

    Google Scholar 

  24. Dhivya, S., Padma, V.V., & Santhini, E. (2015). Wound dressings—a review. Biomedicine (Taipei). 5, 22–22. https://doi.org/10.7603/s40681-015-0022-9.

  25. Gupta, B., Agarwal, R., & Alam, M. S. (2010). Textile-based smart wound dressings. Indian Journal of Fibre and Textile Research, 35, 174–187.

    CAS  Google Scholar 

  26. Ovington, L. G. (2007). Advances in wound dressings. Clinics in Dermatology, 25, 33–38. https://doi.org/10.1016/j.clindermatol.2006.09.003.

    Article  Google Scholar 

  27. Boateng, J. S., Matthews, K. H., Stevens, H. N. E., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 97, 2892–2923. https://doi.org/10.1002/jps.21210.

    Article  CAS  Google Scholar 

  28. Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. (2012). Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 30, 489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003.

    Article  CAS  Google Scholar 

  29. Kong, F., & Hu, Y. F. (2012). Biomolecule immobilization techniques for bioactive paper fabrication. Analytical and Bioanalytical Chemistry, 403, 7–13. https://doi.org/10.1007/s00216-012-5821-1.

    Article  CAS  Google Scholar 

  30. Hossain, S. M. Z., Luckham, R. E., McFadden, M. J., & Brennan, J. D. (2009). Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Analytical Chemistry, 81, 9055–9064. https://doi.org/10.1021/ac901714h.

    Article  CAS  Google Scholar 

  31. Robb, W. A. T. (1961). Clinical trial of melolin: A new non-adherent dressing. British Journal of Plastic Surgery, 14, 47–49. https://doi.org/10.1016/S0007-1226(61)80008-8.

    Article  CAS  Google Scholar 

  32. Wiegand, C., Abel, M., Hipler, U.-C., & Elsner, P. (2019). Effect of non-adhering dressings on promotion of fibroblast proliferation and wound healing in vitro. Scientific Reports, 9, 4320. https://doi.org/10.1038/s41598-019-40921-y.

    Article  CAS  Google Scholar 

  33. Venkatrajah, B., Malathy, V. V., Elayarajah, B., Rajendran, R., & Rammohan, R. (2013). Synthesis of carboxymethyl chitosan and coating on wound dressing gauze for wound healing. Pakistan Journal of Biological Sciences: PJBS, 16, 1438–1448. https://doi.org/10.3923/pjbs.2013.1438.1448.

    Article  CAS  Google Scholar 

  34. Abbasipour, M., Mirjalili, M., Khajavi, R., & Majidi, M. (2014). Coated cotton gauze with Ag/ZnO/chitosan nanocomposite as a modern wound dressing. Journal of Engineered Fibers and Fabrics, 9, 124–130. https://doi.org/10.1177/155892501400900114.

    Article  CAS  Google Scholar 

  35. Zahran, M. K., Ahmed, H. B., & El-Rafie, M. H. (2014). Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydrate Polymers, 108, 145–152. https://doi.org/10.1016/j.carbpol.2014.03.005.

    Article  CAS  Google Scholar 

  36. Anjum, S., Arora, A., Alam, M. S., & Gupta, B. (2016). Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. International Journal of Pharmaceutics, 508, 92–101. https://doi.org/10.1016/j.ijpharm.2016.05.013.

    Article  CAS  Google Scholar 

  37. Hokkanen, S., Bhatnagar, A., & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156–173. https://doi.org/10.1016/j.watres.2016.01.008.

    Article  CAS  Google Scholar 

  38. Zhao, J., Tang, Y., Liu, Y., Cui, L., Xi, X., Zhang, N., et al. (2015). Design carboxymethyl cotton knitted fabrics for wound dressing applications: Solvent effects. Materials and Design, 87, 238–244. https://doi.org/10.1016/j.matdes.2015.07.124.

    Article  CAS  Google Scholar 

  39. Yoon, Y. N., Im, J. N., & Doh, S. J. (2013). Study on the effects of reaction conditions on carboxymethyl cellulose nonwoven manufactured by wet-laid process. Fibers and Polymers, 14, 1012–1018. https://doi.org/10.1007/s12221-013-1012-8.

    Article  CAS  Google Scholar 

  40. Barnea, Y., Weiss, J., & Gur, E. (2010). A review of the applications of the hydrofiber dressing with silver (Aquacel Ag) in wound care. Therapeutics and Clinical Risk Management, 6, 21–27.

    CAS  Google Scholar 

  41. Kutsenko, L. I., Bochek, A. M., Vlasova, E. N., & Volchek, B. Z. (2005). Synthesis of carboxymethyl cellulose based on short fibers and lignified part of flax pedicels (boon). Russian Journal of Applied Chemistry, 78, 2014–2018. https://doi.org/10.1007/s11167-006-0021-4.

    Article  CAS  Google Scholar 

  42. Chen, J., Lan, G., Li, K., Liu, S., Yu, K., Liu, J., et al. (2016). Preparation of a partially carboxymethylated cotton gauze and study of its hemostatic properties. Journal of the Mechanical Behavior of Biomedical Materials, 62, 407–416. https://doi.org/10.1016/j.jmbbm.2016.04.018.

    Article  CAS  Google Scholar 

  43. Kittinaovarat, S., Hengprapakron, N., & Janvikul, W. (2012). Comparative multifunctional properties of partially carboxymethylated cotton gauze treated by the exhaustion or pad-dry-cure methods. Carbohydrate Polymers, 87, 16–23. https://doi.org/10.1016/j.carbpol.2011.08.072.

    Article  CAS  Google Scholar 

  44. Cheng, H. N., & Biswas, A. (2011). Chemical modification of cotton-based natural materials: Products from carboxymethylation. Carbohydrate Polymers, 84, 1004–1010. https://doi.org/10.1016/j.carbpol.2010.12.059.

    Article  CAS  Google Scholar 

  45. Doh, S. J., Lee, J., Lim, D. Y., & Im, J. N. (2013). Manufacturing and analyses of wet-laid nonwoven consisting of carboxymethyl cellulose fibers. Fibers and Polymers, 14. https://doi.org/10.1007/s12221-013-2176-y.

  46. Wang, Y., Zhou, P., Xiao, D., Zhu, Y., Zhong, Y., Zhang, J., et al. (2019). Chitosan-bound carboxymethylated cotton fabric and its application as wound dressing. Carbohydrate Polymers, 221, 202–208. https://doi.org/10.1016/j.carbpol.2019.05.082.

    Article  CAS  Google Scholar 

  47. Parikh, D. V., Fink, T., Rajasekharan, K., Sachinvala, N. D., Sawhney, A. P. S., Calamari, T. A., et al. (2005). Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Textile Research Journal, 75, 134–138. https://doi.org/10.1177/004051750507500208.

    Article  CAS  Google Scholar 

  48. Wang, Y., Xiao, D., Zhong, Y., Zhang, L., Chen, Z., Sui, X., et al. (2020). Facile fabrication of carboxymethyl chitosan/paraffin coated carboxymethylated cotton fabric with asymmetric wettability for hemostatic wound dressing. Cellulose, 27, 3443–3453. https://doi.org/10.1007/s10570-020-02969-2.

    Article  CAS  Google Scholar 

  49. Kittinaovarat, S., & Pinduang, W. (2019). Antibacterial and physical properties of silver chloride-coated partially carboxymethylated cotton gauze. Journal of Metals, Materials and Minerals, 29, 17–24. https://doi.org/10.14456/jmmm.2019.29.

    Article  CAS  Google Scholar 

  50. Vytrasova, J., Tylsova, A., Brozkova, I., Cervenka, L., Pejchalova, M., & Havelka, P. (2008). Antimicrobial effect of oxidized cellulose salts. Journal of Industrial Microbiology and Biotechnology, 35, 1247. https://doi.org/10.1007/s10295-008-0421-y.

    Article  CAS  Google Scholar 

  51. Wu, Y., He, J., Cheng, W., Gu, H., Guo, Z., Gao, S., et al. (2012). Oxidized regenerated cellulose-based hemostat with microscopically gradient structure. Carbohydrate Polymers, 88, 1023–1032. https://doi.org/10.1016/j.carbpol.2012.01.058.

    Article  CAS  Google Scholar 

  52. Dai, L., Dai, H., Yuan, Y., Sun, X., & Zhu, Z. (2011). Effect of tempo oxidation system on kinetic constants of cotton fibers. Bioresources, 6. https://doi.org/10.15376/biores.6.3.2619-2631.

  53. Milanovic, J., Schiehser, S., Potthast, A., & Kostic, M. (2020). Stability of TEMPO-oxidized cotton fibers during natural aging. Carbohydrate Polymers, 230, 115587. https://doi.org/10.1016/j.carbpol.2019.115587.

    Article  CAS  Google Scholar 

  54. Praskalo, J., Kostic, M., Potthast, A., Popov, G., Pejic, B., & Skundric, P. (2009). Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohydrate Polymers, 77, 791–798. https://doi.org/10.1016/j.carbpol.2009.02.028.

    Article  CAS  Google Scholar 

  55. Marković, D., Korica, M., Kostić, M., Radovanović, Ž., Šaponjić, Z., Mitrić, M., et al. (2018). In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics. Cellulose, 25, 829–841. https://doi.org/10.1007/s10570-017-1566-5.

    Article  CAS  Google Scholar 

  56. Diegelmann, R. F. (2003). Excessive neutrophils characterize chronic pressure ulcers. Wound Repair and Regeneration, 11, 490–495. https://doi.org/10.1046/j.1524-475X.2003.11617.x.

    Article  Google Scholar 

  57. Gokarneshan, N., Rachel, D., Rajendran, V., Lavanya, B., & Ghoshal, A. (2015). Phosphorylated cotton chronic wound dressing, 121–131. https://doi.org/10.1007/978-981-287-508-2_11.

  58. Edwards, J., Howley, P., Yachmenev, V., Lambert, A., & Condon, B. (2009). Development of a continuous finishing chemistry process for manufacture of a phosphorylated cotton Chronic wound dressing. Journal of Industrial Textiles, 39. https://doi.org/10.1177/1528083708092012.

  59. Edwards, J. V., Yager, D. R., Cohen, I. K., Diegelmann, R. F., Montante, S., Bertoniere, N., & Bopp, A. F. (2001). Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution. Wound Repair and Regeneration, official publication of the Wound Healing Society [and] the European Tissue Repair Society, 9, 50–58. https://doi.org/10.1046/j.1524-475x.2001.00050.x.

  60. Edwards, J. V., & Howley, P. S. (2007). Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. Journal of Biomedical Materials Research Part A, 83, 446–454. https://doi.org/10.1002/jbm.a.31171.

    Article  CAS  Google Scholar 

  61. Gerhardt, L. C., Lottenbach, R., Rossi, R. M., & Derler, S. (2013). Tribological investigation of a functional medical textile with lubricating drug-delivery finishing. Colloids and Surfaces B: Biointerfaces, 108, 103–109. https://doi.org/10.1016/j.colsurfb.2013.01.055.

    Article  CAS  Google Scholar 

  62. Hashemikia, S., Hemmatinejad, N., Ahmadi, E., & Montazer, M. (2016). Antibacterial and anti-inflammatory drug delivery properties on cotton fabric using betamethasone-loaded mesoporous silica particles stabilized with chitosan and silicone softener. Drug Delivery, 23, 2946–2955. https://doi.org/10.3109/10717544.2015.1132795.

    Article  CAS  Google Scholar 

  63. Hashemikia, S., Hemmatinejad, N., Ahmadi, E., & Montazer, M. (2016). A novel cotton fabric with anti-bacterial and drug delivery properties using SBA-15-NH2/polysiloxane hybrid containing tetracycline. Materials Science and Engineering C, 59, 429–437. https://doi.org/10.1016/j.msec.2015.09.092.

    Article  CAS  Google Scholar 

  64. Lumbreras-Aguayo, A., Meléndez-Ortiz, H. I., Puente-Urbina, B., Alvarado-Canché, C., Ledezma, A., Romero-García, J., et al. (2019). Poly(methacrylic acid)-modified medical cotton gauzes with antimicrobial and drug delivery properties for their use as wound dressings. Carbohydrate Polymers, 205, 203–210. https://doi.org/10.1016/j.carbpol.2018.10.015.

    Article  CAS  Google Scholar 

  65. Semnani, D., Afrashi, M., Alihosseini, F., Dehghan, P., & Maherolnaghsh, M. (2017). Investigating the performance of drug delivery system of fluconazole made of nano–micro fibers coated on cotton/polyester fabric. Journal of Materials Science Materials in Medicine, 28, 175. https://doi.org/10.1007/s10856-017-5957-9.

    Article  CAS  Google Scholar 

  66. Ou, K., Wu, X., Wang, B., Meng, C., Dong, X., & He, J. (2017). Controlled in situ graft polymerization of DMAEMA onto cotton surface via SI-ARGET ATRP for low-adherent wound dressings. Cellulose, 24, 5211–5224. https://doi.org/10.1007/s10570-017-1449-9.

    Article  CAS  Google Scholar 

  67. Koetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering: R: Reports, 93, 1–49. https://doi.org/10.1016/j.mser.2015.04.001.

    Article  Google Scholar 

  68. Jeong, B., Kibbey, M. R., Birnbaum, J. C., Won, Y.-Y., & Gutowska, A. (2000). Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules, 33, 8317–8322. https://doi.org/10.1021/ma000638v.

    Article  CAS  Google Scholar 

  69. ter Schiphorst, J., van den Broek, M., de Koning, T., Murphy, J. N., Schenning, A. P. H. J., & Esteves, A. C. C. (2016). Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. Journal of Materials Chemistry A, 4, 8676–8681. https://doi.org/10.1039/C6TA00161K.

    Article  Google Scholar 

  70. Chatterjee, S., & Chi-leung Hui, P.(2019). Review of stimuli-responsive polymers in drug delivery and textile application. Molecules, 24. https://doi.org/10.3390/molecules24142547.

  71. Wang, B., Wu, X., Li, J., Hao, X., Lin, J., Cheng, D., & Lu, Y. (2016). Thermosensitive behavior and antibacterial activity of cotton fabric modified with a chitosan-poly(N-isopropylacrylamide) interpenetrating polymer network hydrogel. Polymers, 8. https://doi.org/10.3390/polym8040110.

  72. Mostafalu, P., Kiaee, G., Giatsidis, G., Khalilpour, A., Nabavinia, M., Dokmeci, M. R., et al. (2017). A textile dressing for temporal and dosage controlled drug delivery. Advanced Functional Materials, 27, 1702399. https://doi.org/10.1002/adfm.201702399.

    Article  CAS  Google Scholar 

  73. Bashari, A., Hemmatinejad, N., & Pourjavadi, A. (2013). Surface modification of cotton fabric with dual-responsive PNIPAAm/chitosan nano hydrogel. Polymers for Advanced Technologies, 24, 797–806. https://doi.org/10.1002/pat.3145.

    Article  CAS  Google Scholar 

  74. Shimamoto, T. (2011). Polyurethane sheet: A potential substitute of surgical cotton gauze. Journal of Cardiothoracic Surgery, 6, 26. https://doi.org/10.1186/1749-8090-6-26.

    Article  Google Scholar 

  75. Fulchiero, G. J., Ammirati, C. T., & Sengelmann, R. D. (2009). Cotton dental rolls for effective and cost-efficient hemostasis. Dermatologic Surgery, official publication for American Society for Dermatologic Surgery [et al.], 35, 858–859. https://doi.org/10.1111/j.1524-4725.2009.01131.x.

  76. Bogle, M. A., Joseph, A. K., & MacFarlane, D. (2004). Use of a dental roll coated with flavored viscous lidocaine for nasal mucosal surgery. Dermatologic Surgery, official publication for American Society for Dermatologic Surgery [et al.], 30, 792–793. https://doi.org/10.1111/j.1524-4725.2004.30219.x.

  77. Yag-Howard, C. (2014). Sutures, needles, and tissue adhesives: A review for dermatologic surgery.

    Google Scholar 

  78. Sajid, M. S., Craciunas, L., Sains, P., Singh, K. K., & Baig, M. K. (2013). Use of antibacterial sutures for skin closure in controlling surgical site infections: A systematic review of published randomized, controlled trials. Gastroenterology Report (Oxf), 1, 42–50. https://doi.org/10.1093/gastro/got003.

    Article  Google Scholar 

  79. Chellamani, K. P., Veerasubramanian, D., & Balaji, R. V. (2013). Surgical sutures: An overview.

    Google Scholar 

  80. Joseph, B., George, A., Gopi, S., Kalarikkal, N., & Thomas, S. (2017). Polymer sutures for simultaneous wound healing and drug delivery—A review. International Journal of Pharmaceutics, 524, 454–466. https://doi.org/10.1016/j.ijpharm.2017.03.041.

    Article  CAS  Google Scholar 

  81. Leff, D. R., Nortley, M., Dang, V., & Bhutiani, R. P. (2007). The effect of local cooling on pain perception during infiltration of local anaesthetic agents, a prospective randomised controlled trial*. Anaesthesia, 62, 677–682. https://doi.org/10.1111/j.1365-2044.2007.05056.x.

    Article  CAS  Google Scholar 

  82. Hindocha, N., Manhem, F., Backryd, E., & Bagesund, M. (2019). Ice versus lidocaine 5% gel for topical anaesthesia of oral mucosa—a randomized cross-over study. BMC Anesthesiology, 19, 227. https://doi.org/10.1186/s12871-019-0902-8.

    Article  CAS  Google Scholar 

  83. Jayasuriya, N. S. S., Weerapperuma, I. D., & Amarasinghe, M. (2017). The use of an iced cotton bud as an effective pre-cooling method for palatal anaesthesia: A technical note. Singapore Dental Journal, 38, 17–19. https://doi.org/10.1016/j.sdj.2017.07.001.

    Article  Google Scholar 

  84. Mecnika, V., Hoerr, M., Krievins, I., Jockenhoevel, S., & Gries, T. (2015). Technical embroidery for smart textiles: Review. Materials Science. Textile and Clothing Technology, 9. https://doi.org/10.7250/mstct.2014.009.

  85. Sajesh, K. M., Kiran, K., Nair, S. V., & Jayakumar, R. (2016). Sequential layer-by-layer electrospinning of nano SrCO3/PRP loaded PHBV fibrous scaffold for bone tissue engineering. Composites Part B Engineering, 99, 445–452. https://doi.org/10.1016/j.compositesb.2016.06.026.

    Article  CAS  Google Scholar 

  86. Sell, S., Barnes, C., Smith, M., McClure, M., Madurantakam, P., Grant, J., et al. (2007). Extra-cellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer International, 56, 1349–1360. https://doi.org/10.1002/pi.2344.

    Article  CAS  Google Scholar 

  87. He, X., Cheng, L., Zhang, X., Xiao, Q., Zhang, W., & Lu, C. (2015). Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydrate Polymers, 115, 485–493. https://doi.org/10.1016/j.carbpol.2014.08.114.

    Article  CAS  Google Scholar 

  88. Ao, C., Niu, Y., Zhang, X., He, X., Zhang, W., & Lu, C. (2017). Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. International Journal of Biological Macromolecules, 97, 568–573. https://doi.org/10.1016/j.ijbiomac.2016.12.091.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Shahriari Khalaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahriari Khalaji, M., Lugoloobi, I. (2020). Biomedical Application of Cotton and Its Derivatives. In: Wang, H., Memon, H. (eds) Cotton Science and Processing Technology. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9169-3_16

Download citation

Publish with us

Policies and ethics