Skip to main content
  • 529 Accesses

Abstract

Folk or traditional systems of medicines always played an indispensable role in the global healthcare system. Traditional medicine as abundant natural resources has unique advantages in the treatment of diabetes, hyperlipidemia, and other diseases due to its focus on the regulation of body functions as a whole, multi-layered mechanism and approach, which make traditional drugs widely used in all over the world. There is a long history of using plants to treat diabetes in Asia, Africa, and  Americas, and some plants and herbal preparations are effective to diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simmons RK, Alberti KGMM, Gale EAM, Colagiuri S, Tuomilehto J, Qiao Q, Ramachandran A, Tajima N, Mirchov IB, Ben-Nakhi A, Reaven G, Sambo BH, Mendis S, Roglic G (2010) The metabolic syndrome: useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia 53(4):600–605. https://doi.org/10.1007/s00125-009-1620-4

    Article  CAS  PubMed  Google Scholar 

  2. Tang YZ, Wang G, Jiang ZH, Yan TT, Chen YJ, Yang M, Meng LL, Zhu YJ, Li CG, Li Z, Yu P, Ni CL (2015) Efficacy and safety of vildagliptin, sitagliptin, and linagliptin as add-on therapy in Chinese patients with T2DM inadequately controlled with dual combination of insulin and traditional oral hypoglycemic agent. Diabetol Metab Syndr 7:9. https://doi.org/10.1186/s13098-015-0087-3

  3. Xiao SW, Liu C, Chen MJ, Zou JF, Zhang ZM, Cui X, Jiang S, Shang EX, Qian DW, Duan JN (2020) Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Appl Microbiol Biot 104(1):303–317. https://doi.org/10.1007/s00253-019-10174-w

    Article  CAS  Google Scholar 

  4. Bannister M, Berlanga J (2016) Effective utilization of oral hypoglycemic agents to achieve individualized HbA1c targets in patients with type 2 diabetes mellitus. Diab Therapy 7(3):387–399. https://doi.org/10.1007/s13300-016-0188-5

    Article  CAS  Google Scholar 

  5. Mishra GP, Sharma R (2016) Identification of potential PPAR gamma agonists as hypoglycemic agents: molecular docking approach. Interdiscip Sci 8(3):220–228. https://doi.org/10.1007/s12539-015-0126-7

    Article  CAS  PubMed  Google Scholar 

  6. Sun XL, Zhang B, Wang SH, Liu SY, Zhou QY (2020) Analysis of the rule of TCM compatibility in TCM prescriptions containing Ginseng Radix ET Rhizoma in ancient books for Xiaoke Bing. Evid-Based Compl Alt 2020:7. https://doi.org/10.1155/2020/9472304

    Article  Google Scholar 

  7. Zhang J, Fan S, Mao Y, Ji Y, Jin L, Lu J, Chen X (2016) Cardiovascular protective effect of polysaccharide from Ophiopogon japonicus in diabetic rats. Int J Biol Macromol 82:505–513. https://doi.org/10.1016/j.ijbiomac.2015.09.069

    Article  CAS  PubMed  Google Scholar 

  8. Gong YJ, Zhang J, Gao F, Zhou JW, Xiang ZN, Zhou CG, Wan LS, Chen JC (2017) Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong. Carbohydr Polym 173:215–222. https://doi.org/10.1016/j.carbpol.2017.05.076

    Article  CAS  PubMed  Google Scholar 

  9. Wang H-Y, Guo L-X, Hu W-H, Peng Z-T, Wang C, Chen Z-C, Liu EYL, Dong TTX, Wang T-J, Tsim KWK (2019) Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut microbiota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice. J Funct Foods 63. https://doi.org/10.1016/j.jff.2019.103593

  10. Zhu YY, Zhu CH, Yang HX, Deng JJ, Fan DD (2020) Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res 155:11. https://doi.org/10.1016/j.phrs.2020.104746

    Article  CAS  Google Scholar 

  11. Wei Y, Yang H, Zhu C, Deng J, Fan D (2020) Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice. J Agr Food Chem 68(18):5107–5117. https://doi.org/10.1021/acs.jafc.0c00605

    Article  CAS  Google Scholar 

  12. Karmazyn M, Gan XT (2019) Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence. Can J Physiol Pharmacol 97(4):265–276. https://doi.org/10.1139/cjpp-2018-0440

    Article  CAS  PubMed  Google Scholar 

  13. Karunasagara S, Hong GL, Park SR, Lee NH, Jung DY, Kim TW, Jung JY (2020) Korean red ginseng attenuates hyperglycemia-induced renal inflammation and fibrosis via accelerated autophagy and protects against diabetic kidney disease. J Ethnopharmacol 254:10. https://doi.org/10.1016/j.jep.2020.112693

    Article  CAS  Google Scholar 

  14. Liu J, Xu J, Guo J (2019) Review of active constituents and pharmacological activities of Schisandrae Chinensis Fructus (五味子活性成分及药理作用研究进展). Chinese J Exp Tradit Med Formulae 25(11):206–215

    Google Scholar 

  15. Jin D, Zhao T, Feng WW, Mao GH, Zou Y, Wang W, Li Q, Chen Y, Wang XT, Yang LQ, Wu XY (2016) Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4. Int J Biol Macromol 87:555–562. https://doi.org/10.1016/j.ijbiomac.2016.03.028

    Article  CAS  PubMed  Google Scholar 

  16. Niu J, Xu G, Jiang S, Li H, Yuan G (2017) In Vitro Antioxidant activities and anti-diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes. Int J Biol Macromol 94(Pt A):154–160. https://doi.org/10.1016/j.ijbiomac.2016.10.015

  17. Du XX, Tao X, Liang S, Che JY, Yang S, Li H, Chen JG, Wang CM (2019) Hypoglycemic effect of acidic polysaccharide from Schisandra chinensis on T2D rats induced by high-fat diet combined with STZ. Biol Pharm Bull 42(8):1275–1281. https://doi.org/10.1248/bpb.b18-00915

    Article  CAS  PubMed  Google Scholar 

  18. Yang L, Chen J, Lu H, Lai J, He Y, Liu S, Guo X (2019) Pueraria lobata for Diabetes Mellitus: past, present and future. Am J Chin Med 47(7):1419–1444. https://doi.org/10.1142/S0192415X19500733

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Yu J, Shi J (2018) Management of diabetes mellitus with puerarin, a natural isoflavone from Pueraria lobata. Am J Chin Med 46(8):1771–1789. https://doi.org/10.1142/S0192415X18500891

    Article  CAS  PubMed  Google Scholar 

  20. Li XL, Zhu QQ, Zheng R, Yan JY, Wei MG, Fan YC, Deng YY, Zhong YF (2020) Puerarin attenuates diabetic nephropathy by promoting autophagy in podocytes. Front Physiol 11:11. https://doi.org/10.3389/fphys.2020.00073

    Article  CAS  Google Scholar 

  21. Luo Q, Cai Y, Yan J, Sun M, Corke H (2004) Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci 76(2):137–149. https://doi.org/10.1016/j.lfs.2004.04.056

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, Si L, Fan L, Jian W, Pei H, Lin R (2018) Polysaccharide IV from Lycium barbarum L. Improves lipid profiles of gestational diabetes mellitus of pregnancy by upregulating ABCA1 and downregulating sterol regulatory element-binding transcription 1 via miR-33. Front Endocrinol (Lausanne) 9:49. https://doi.org/10.3389/fendo.2018.00049

  23. Xia H, Tang H, Wang F, Yang X, Wang Z, Liu H, Pan D, Yang C, Wang S, Sun G (2019) An untargeted metabolomics approach reveals further insights of Lycium barbarum polysaccharides in high fat diet and streptozotocin-induced diabetic rats. Food Res Int 116:20–29. https://doi.org/10.1016/j.foodres.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  24. Luan X, Zhang LJ, Li XQ, Rahman K, Zhang H, Chen HZ, Zhang WD (2020) Compound-based Chinese medicine formula: From discovery to compatibility mechanism. J Ethnopharmacol 254:11. https://doi.org/10.1016/j.jep.2020.112687

    Article  CAS  Google Scholar 

  25. Dai B, Wu Q, Zeng C, Zhang J, Cao L, Xiao Z, Yang M (2016) The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J Ethnopharmacol 192:382–389. https://doi.org/10.1016/j.jep.2016.07.024

    Article  PubMed  Google Scholar 

  26. Liu JP, Feng L, Zhang MH, Ma DY, Wang SY, Gu J, Fu Q, Qu R, Ma SP (2013) Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. J Ethnopharmacol 150(1):371–381. https://doi.org/10.1016/j.jep.2013.09.003

    Article  PubMed  Google Scholar 

  27. Cheng X, Huang Y, Zhang Y, Zhou W (2020) LW-AFC, a new formula from the traditional Chinese medicine Liuwei Dihuang decoction, as a promising therapy for Alzheimer’s disease: pharmacological effects and mechanisms. Adv Pharmacol (San Diego, Calif) 87:159–177. https://doi.org/10.1016/bs.apha.2019.10.005

  28. Han C (2009) Comparison of anti-hyperglycemic effect of inorganic constituents and organic in traditional Chinese medicine, Jinqi compound recipe. Biol Trace Elem Res 131(1):55–61. https://doi.org/10.1007/s12011-009-8344-7

    Article  CAS  PubMed  Google Scholar 

  29. Gao HJ, Yang YX, Deng JQ, Liang JQ, Zhang WH, Feng XZ (2019) A systematic review and meta-analysis on the efficacy and safety of traditional Chinese patent medicine Jinqi Jiangtang Tablet in the treatment of type 2 diabetes. Complement Ther Med 47:11. https://doi.org/10.1016/j.ctim.2019.01.016

    Article  Google Scholar 

  30. Cao Y, Yao GW, Sheng YY, Yang L, Wang ZX, Yang Z, Zhuang PW, Zhang YJ (2019) JinQi Jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice J Diabetes Res 12. https://doi.org/10.1155/2019/1872134

  31. Pang B, Ni Q (2019) Application of classical formula in treatment of diabetes. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chinese Materia Medica 44(18):3895–3898. https://doi.org/10.19540/j.cnki.cjcmm.20190416.504

  32. Pan L, Li Z, Wang Y, Zhang B, Liu G, Liu J (2020) Network pharmacology and metabolomics study on the intervention of traditional Chinese medicine Huanglian decoction in rats with type 2 diabetes mellitus. J Ethnopharmacol 258:112842. https://doi.org/10.1016/j.jep.2020.112842

    Article  CAS  PubMed  Google Scholar 

  33. Shrivastava SR, Shrivastava PS, Ramasamy J (2015) Mainstreaming of Ayurveda, Yoga, Naturopathy, Unani, Siddha, and Homeopathy with the health care delivery system in India. J Tradit Complement Med 5(2):116–118. https://doi.org/10.1016/j.jtcme.2014.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nakanekar A, Kohli K, Tatke P (2019) Ayurvedic polyherbal combination (PDBT) for prediabetes: a randomized double blind placebo controlled study. J Ayurveda Integr Med 10(4):284–289. https://doi.org/10.1016/j.jaim.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sharma R, Shahi VK, Khanduri S, Goyal A, Chaudhary S, Rana RK, Singhal R, Srikanth N, Dhiman KS (2019) Effect of Ayurveda intervention, lifestyle modification and Yoga in prediabetic and type 2 diabetes under the National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke (NPCDCS)-AYUSH integration project. Ayu 40(1):8–15. https://doi.org/10.4103/ayu.AYU_105_19

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jyotsna VP (2014) Prediabetes and type 2 diabetes mellitus: evidence for effect of yoga. Indian J Endocrinol Metab 18(6):745–749. https://doi.org/10.4103/2230-8210.141318

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sen S, Chakraborty R, De B (2016) Management of Diabetes Mellitus. Diabetes Mellitus in 21st Century, 153–174.

    Google Scholar 

  38. Dixit S, Tiwari S (2020) Investigation of anti-diabetic plants used among the ethnic communities of Kanpur division, India. J Ethnopharmacol 253:11. https://doi.org/10.1016/j.jep.2020.112639

    Article  Google Scholar 

  39. Rizvi SI, Mishra N (2013) Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res 2013:712092. https://doi.org/10.1155/2013/712092

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar GS, Shetty AK, Salimath PV (2005) Modulatory effect of fenugreek seed mucilage and spent turmeric on intestinal and renal disaccharidases in streptozotocin induced diabetic rats. Plant Foods Hum Nutr 60(2):87–91. https://doi.org/10.1007/s11130-005-5104-5

    Article  PubMed  Google Scholar 

  41. Kamble B, Gupta A, Moothedath I, Khatal L, Janrao S, Jadhav A, Duraiswamy B (2016) Effects of Gymnema sylvestre extract on the pharmacokinetics and pharmacodynamics of glimepiride in streptozotocin induced diabetic rats. Chem Biol Interact 245:30–38. https://doi.org/10.1016/j.cbi.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  42. Gholap S, Kar A (2003) Effects of Inula racemosa root and Gymnema sylvestre leaf extracts in the regulation of corticosteroid induced diabetes mellitus: involvement of thyroid hormones. Pharmazie 58(6):413–415

    CAS  PubMed  Google Scholar 

  43. Singh D, Singh B, Goel RK (2011) Traditional uses, phytochemistry and pharmacology of Ficus religiosa: a review. J Ethnopharmacol 134(3):565–583. https://doi.org/10.1016/j.jep.2011.01.046

    Article  CAS  PubMed  Google Scholar 

  44. Pandit R, Phadke A, Jagtap A (2010) Antidiabetic effect of Ficus religiosa extract in streptozotocin-induced diabetic rats. J Ethnopharmacol 128(2):462–466. https://doi.org/10.1016/j.jep.2010.01.025

    Article  Google Scholar 

  45. Hannan J, Ojo O, Rokeya L, Khaleque J, Akhter M, Flatt P, Abdel-Wahab Y (2015) Actions underlying antidiabetic effects of Ocimum sanctum leaf extracts in animal models of type 1 and type 2 diabetes. Eur J Med Plants 5(1):1–12. https://doi.org/10.9734/ejmp/2015/11840

    Article  Google Scholar 

  46. Jayant SK, Srivastava N (2019) Effects of Ocimum sanctum and Allium sativum extracts against diabetes and determination of DNA damage and cytotoxicity in alloxan induced diabetic rats. Biosci Biotechnol Res Commun 12(4):1100–1109. https://doi.org/10.21786/bbrc/12.4/33

  47. Gaddam A, Galla C, Thummisetti S, Marikanty RK, Palanisamy UD, Rao PV (2015) Role of Fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J Diabetes Metab Disord 14:74. https://doi.org/10.1186/s40200-015-0208-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sharma S, Mishra V, Srivastava N (2020) Protective effect of Trigonella foenum-graecum and Cinnamomum zeylanicum against diabetes induced oxidative DNA damage in rats. Indian J Biochem Biophys 57(1):15–26

    CAS  Google Scholar 

  49. Banerji S, Banerjee S (2016) A formulation of grape seed, Indian gooseberry, turmeric and fenugreek helps controlling type 2 diabetes mellitus in advanced-stage patients. Eur J Integr Med 8(5):645–653. https://doi.org/10.1016/j.eujim.2016.06.012

    Article  Google Scholar 

  50. Neamsuvan O, Madeebing N, Mah L, Lateh W (2015) A survey of medicinal plants for diabetes treating from Chana and Nathawee district, Songkhla province, Thailand. J Ethnopharmacol 174:82–90. https://doi.org/10.1016/j.jep.2015.07.050

    Article  PubMed  Google Scholar 

  51. Abdelaziz DH, Ali SA, Mostafa MM (2015) Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats. Pharm Biol 53(6):792–799. https://doi.org/10.3109/13880209.2014.942790

    Article  PubMed  Google Scholar 

  52. Abdel-Rahman RF, Ezzat SM, Ogaly HA, Abd-Elsalam RM, Hessin AF, Fekry MI, Mansour DF, Mohamed SO (2020) Ficus deltoidea extract down-regulates protein tyrosine phosphatase 1B expression in a rat model of type 2 diabetes mellitus: a new insight into its antidiabetic mechanism. J Nutr Sci 9:e2. https://doi.org/10.1017/jns.2019.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rafe MR (2017) A review of five traditionally used anti-diabetic plants of Bangladesh and their pharmacological activities. Asian Pac J Trop Med 10(10):933–939. https://doi.org/10.1016/j.apjtm.2017.09.002

    Article  PubMed  Google Scholar 

  54. Rashidi AA, Mirhashemi SM, Taghizadeh M, Sarkhail P (2013) Iranian medicinal plants for diabetes mellitus: a systematic review. Pakistan J Biol Sci: PJBS 16(9):401–411

    Article  Google Scholar 

  55. Hamdan II, Afifi FU (2004) Studies on the in vitro and in vivo hypoglycemic activities of some medicinal plants used in treatment of diabetes in Jordanian traditional medicine. J Ethnopharmacol 93(1):117–121. https://doi.org/10.1016/j.jep.2004.03.033

    Article  CAS  PubMed  Google Scholar 

  56. Zhao LL, Makinde EA, Shah MA, Olatunji OJ, Panichayupakaranant P (2019) Rhinacanthins-rich extract and rhinacanthin C ameliorate oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic nephropathy. J Food Biochem 43(4):e12812. https://doi.org/10.1111/jfbc.12812

    Article  CAS  PubMed  Google Scholar 

  57. Calzada F, Solares-Pascasio JI, Ordonez-Razo RM, Velazquez C, Barbosa E, Garcia-Hernandez N, Mendez-Luna D, Correa-Basurto J (2017) Antihyperglycemic activity of the leaves from Annona cherimola Miller and Rutin on Alloxan-induced diabetic rats. Pharmacogn Res 9(1):1–6. https://doi.org/10.4103/0974-8490.199781

    Article  CAS  Google Scholar 

  58. Hamza N, Berke B, Cheze C, Le Garrec R, Lassalle R, Agli AN, Robinson P, Gin H, Moore N (2011) Treatment of high fat diet induced type 2 diabetes in C57BL/6J mice by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J Ethnopharmacol 133(2):931–933. https://doi.org/10.1016/j.jep.2010.11.019

    Article  PubMed  Google Scholar 

  59. Anaya-Eugenio GD, Rivero-Cruz I, Rivera-Chavez J, Mata R (2014) Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. J Ethnopharmacol 155(1):416–425. https://doi.org/10.1016/j.jep.2014.05.051

    Article  CAS  PubMed  Google Scholar 

  60. Chester K, Zahiruddin S, Ahmad A, Khan W, Paliwal S, Ahmad S (2019) Bioautography-based identification of antioxidant metabolites of Solanum nigrum L. and exploration its hepatoprotective potential against D-galactosamine-induced hepatic fibrosis in rats. Pharmacogn Mag 15(62):104–110. https://doi.org/10.4103/pm.pm_359_18

    Article  CAS  Google Scholar 

  61. de Oliveira AP, Coppede JS, Bertoni BW, Crotti AEM, Franca SC, Pereira AMS, Taleb-Contini SH (2018) Costus spiralis (Jacq.) Roscoe: a novel source of flavones with alpha-glycosidase inhibitory activity. Chem Biodivers 15(1). https://doi.org/10.1002/cbdv.201700421

  62. Raman A, Lau C (1996) Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomed Int J Phytother Phytopharmacol 2(4):349–362. https://doi.org/10.1016/s0944-7113(96)80080-8

    Article  CAS  Google Scholar 

  63. Rao PS, Mohan GK (2017) In vitro alpha-amylase inhibition and in vivo antioxidant potential of Momordica dioica seeds in streptozotocin-induced oxidative stress in diabetic rats. Saudi J Biol Sci 24(6):1262–1267. https://doi.org/10.1016/j.sjbs.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Zhou G, Peng Y, Wang M, Li X (2020) Anti-hyperglycemic and anti-hyperlipidemic effects of a special fraction of Luohanguo extract on obese T2DM rats. J Ethnopharmacol 247:112273. https://doi.org/10.1016/j.jep.2019.112273

    Article  CAS  PubMed  Google Scholar 

  65. Kamboj P, Talukdar NC, Banerjee SK (2019) Therapeutic benefit of Dillenia indica in diabetes and its associated complications. J Diabetes Res 2019:4632491. https://doi.org/10.1155/2019/4632491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chege BM, Waweru MP, Frederick B, Nyaga NM (2019) The freeze-dried extracts of Rotheca myricoides (Hochst.) Steane & Mabb possess hypoglycemic, hypolipidemic and hypoinsulinemic on type 2 diabetes rat model. J Ethnopharmacol 244:112077. https://doi.org/10.1016/j.jep.2019.112077

  67. Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, Wang L, Che Y, Zhao D, Mo F, Gao S, Zhang D (2019) Salvia miltiorrhiza in diabetes: a review of its pharmacology, phytochemistry, and safety. Phytomedicine 58:152871. https://doi.org/10.1016/j.phymed.2019.152871

    Article  CAS  PubMed  Google Scholar 

  68. Boye A, Acheampong DO, Gyamerah EO, Asiamah EA, Addo JK, Mensah DA, Brah AS, Ayiku PJ (2020) Glucose lowering and pancreato-protective effects of Abrus Precatorius (L.) leaf extract in normoglycemic and STZ/Nicotinamide - induced diabetic rats. J Ethnopharmacol:112918. https://doi.org/10.1016/j.jep.2020.112918

  69. Cechinel-Zanchett CC, da Silva R, Tenfen A, Siebert DA, Micke G, Vitali L, Cechinel V, de Andrade SF, de Souza P (2019) Bauhinia forficata link, a Brazilian medicinal plant traditionally used to treat cardiovascular disorders, exerts endothelium-dependent and independent vasorelaxation in thoracic aorta of normotensive and hypertensive rats. J Ethnopharmacol 243:8. https://doi.org/10.1016/j.jep.2019.112118

    Article  CAS  Google Scholar 

  70. Kumar M, Govindrajan J, Nyola NK (2017) Antihyperglycemic Potential of Saponin-enriched Fraction from Pithecellobium dulce Benth. Seed extract. Pharmacogn Res 9(Suppl 1):S23–S26. https://doi.org/10.4103/pr.pr_18_17

    Article  CAS  Google Scholar 

  71. Wang Q, Zhou J, Xiang Z, Tong Q, Pan J, Wan L, Chen J (2019) Anti-diabetic and renoprotective effects of Cassiae Semen extract in the streptozotocin-induced diabetic rats. J Ethnopharmacol 239:111904. https://doi.org/10.1016/j.jep.2019.111904

    Article  PubMed  Google Scholar 

  72. Rajasekhar A, Peddanna K, Vedasree N, Munirajeswari P, Nagaraju N, Badri KR, Chippada AR (2019) Antidiabetic activity of root tubers of Asparagus gonoclados Baker in streptozotocin induced diabetic rats. J Ethnopharmacol 242:112027. https://doi.org/10.1016/j.jep.2019.112027

    Article  CAS  PubMed  Google Scholar 

  73. Afiune LAF, Leal-Silva T, Sinzato YK, Moraes-Souza RQ, Soares TS, Campos KE, Fujiwara RT, Herrera E, Damasceno DC, Volpato GT (2017) Beneficial effects of Hibiscus rosa-sinensis L. flower aqueous extract in pregnant rats with diabetes. PLoS One 12(6):e0179785. https://doi.org/10.1371/journal.pone.0179785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ansari P, Azam S, Hannan JMA, Flatt PR, Wahab Y (2020) Anti-hyperglycaemic activity of H. rosa-sinensis leaves is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of insulin secretion. J Ethnopharmacol 253:10. https://doi.org/10.1016/j.jep.2020.112647

  75. Cunha WR, Arantes GM, Ferreira DS, Lucarini R, Silva ML, Furtado NA, da Silva Filho AA, Crotti AE, Araujo AR (2008) Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia 79(5):356–360. https://doi.org/10.1016/j.fitote.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  76. Baliga MS, Fernandes S, Thilakchand KR, D'Souza P, Rao S (2013) Scientific validation of the antidiabetic effects of Syzygium jambolanum DC (black plum), a traditional medicinal plant of India. J Altern Complement Med 19(3):191–197. https://doi.org/10.1089/acm.2011.0752

    Article  PubMed  Google Scholar 

  77. Beidokhti MN, Eid HM, Villavicencio MLS, Jager AK, Lobbens ES, Rasoanaivo PR, McNair LM, Haddad PS, Staerk D (2020) Evaluation of the antidiabetic potential of Psidium guajava L. (Myrtaceae) using assays for alpha-glucosidase, alpha-amylase, muscle glucose uptake, liver glucose production, and triglyceride accumulation in adipocytes. J Ethnopharmacol 257:112877. https://doi.org/10.1016/j.jep.2020.112877

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Yang L, Zhang Y, Liu X, Wu Z, Gilbert RG, Deng B, Wang K (2020) Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. J Ethnopharmacol 248:112308. https://doi.org/10.1016/j.jep.2019.112308

    Article  CAS  PubMed  Google Scholar 

  79. Barragan-Zarate GS, Lagunez-Rivera L, Solano R, Pineda-Pena EA, Landa-Juarez AY, Chavez-Pina AE, Carranza-Alvarez C, Hernandez-Benavides DM (2020) Prosthechea karwinskii, an orchid used as traditional medicine, exerts anti-inflammatory activity and inhibits ROS. J Ethnopharmacol 253:112632. https://doi.org/10.1016/j.jep.2020.112632

    Article  CAS  PubMed  Google Scholar 

  80. Montefusco-Pereira CV, de Carvalho MJ, de Araujo Boleti AP, Teixeira LS, Matos HR, Lima ES (2013) Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. Appl Biochem Biotechnol 170(6):1367–1378. https://doi.org/10.1007/s12010-013-0271-6

    Article  CAS  PubMed  Google Scholar 

  81. Sudasinghe HP, Peiris DC (2018) Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ 6:17. https://doi.org/10.7717/peerj.4389

    Article  CAS  Google Scholar 

  82. Adhikari A, Ray M, Das AK, Sur TK (2016) Antidiabetic and antioxidant activity of Rhizophora mucronata leaves (Indian sundarban mangrove): an in vitro and in vivo study. Ayu 37(1):76–81. https://doi.org/10.4103/ayu.AYU_182_15

    Article  PubMed  PubMed Central  Google Scholar 

  83. Komakech R, Kang Y (2019) Ethnopharmacological potential of African cherry [Prunus africana]. J Herb Med:17–18. https://doi.org/10.1016/j.hermed.2019.100283

  84. Wang N, Zhu F, Shen M, Qiu L, Tang M, Xia H, Chen L, Yuan Y, Ma S, Chen K (2019) Network pharmacology-based analysis on bioactive anti-diabetic compounds in Potentilla discolor bunge. J Ethnopharmacol 241:111905. https://doi.org/10.1016/j.jep.2019.111905

    Article  CAS  PubMed  Google Scholar 

  85. Mudi SR, Akhter M, Biswas SK, Muttalib MA, Choudhury S, Rokeya B, Ali L (2017) Effect of aqueous extract of Aegle marmelos fruit and leaf on glycemic, insulinemic and lipidemic status of type 2 diabetic model rats. J Complement Integr Med 14(2). https://doi.org/10.1515/jcim-2016-0111

  86. Erukainure OL, Sanni O, Ijomone OM, Ibeji CU, Chukwuma CI, Islam MS (2019) The antidiabetic properties of the hot water extract of kola nut (Cola nitida (Vent.) Schott & Endl.) in type 2 diabetic rats. J Ethnopharmacol 242:112033. https://doi.org/10.1016/j.jep.2019.112033

  87. Deaton AS, Tortora R (2015) People in sub-Saharan Africa rate their health and health care among the lowest in the world. Health Aff (Millwood) 34(3):519–527. https://doi.org/10.1377/hlthaff.2014.0798

    Article  Google Scholar 

  88. Amuri B, Maseho M, Simbi L, Okusa P, Duez P, Byanga K (2017) Hypoglycemic and antihyperglycemic activities of nine medicinal herbs used as antidiabetic in the region of Lubumbashi (DR Congo). Phytother Res 31(7):1029–1033. https://doi.org/10.1002/ptr.5814

    Article  CAS  PubMed  Google Scholar 

  89. Abderrahim A, Belhamel K, Chalard P, Figueredo G (2019) Chemotypes and radical scavenging activity of the essential oils from Artemisia arborescens L. growing in three areas of Bejaia (Algeria). J Food Meas Charact 13(3):2491–2499. https://doi.org/10.1007/s11694-019-00169-6

    Article  Google Scholar 

  90. Hamza N, Berke B, Umar A, Cheze C, Gin H, Moore N (2019) A review of Algerian medicinal plants used in the treatment of diabetes. J Ethnopharmacol 238:111841. https://doi.org/10.1016/j.jep.2019.111841

    Article  PubMed  Google Scholar 

  91. Telli A, Esnault MA, Khelil AOE (2016) An ethnopharmacological survey of plants used in traditional diabetes treatment in south-eastern Algeria (Ouargla province). J Arid Environ 127:82–92. https://doi.org/10.1016/j.jaridenv.2015.11.005

    Article  Google Scholar 

  92. Aissa L, Zohra M, El Houda HN, Zohra DF (2019) Ethnobotanical study of medicinal plants used for the treatment of Diabetes mellitus in Sidi Bel Abbes region (North-west Algeria). Bol Latinoam Caribe Plantas M 18(4):392–410. https://doi.org/10.35588/blacpma.19.18.4.25

  93. Allali H, Benmehdi H, Dib MA, Tabti B, Ghalem S, Benabadji N (2008) Phytotherapy of diabetes in West Algeria. Asian J Chem 20(4):2701–2710

    CAS  Google Scholar 

  94. Salihu Shinkafi T, Bello L, Wara Hassan S, Ali S (2015) An ethnobotanical survey of antidiabetic plants used by Hausa-Fulani tribes in Sokoto, Northwest Nigeria. J Ethnopharmacol 172:91–99. https://doi.org/10.1016/j.jep.2015.06.014

    Article  PubMed  Google Scholar 

  95. Akharaiyi FC, Akinyemi AJ, Isitua CC, Ogunmefun OT, Opakunle SO, Fasae JK (2017) Some antidiabetic medicinal plants used by traditional healers in Ado Ekiti, Nigeria. Bratisl Med J 118(8):504–505. https://doi.org/10.4149/bll_2017_097

    Article  CAS  Google Scholar 

  96. Rutebemberwa E, Lubega M, Katureebe SK, Oundo A, Kiweewa F, Mukanga D (2013) Use of traditional medicine for the treatment of diabetes in Eastern Uganda: a qualitative exploration of reasons for choice. BMC Int Health Hum Rights 13:7. https://doi.org/10.1186/1472-698x-13-1

    Article  Google Scholar 

  97. Ssenyange CW, Namulindwa A, Oyik B, Ssebuliba J (2015) Plants used to manage type II diabetes mellitus in selected districts of central Uganda. Afr Health Sci 15(2):496–502. https://doi.org/10.4314/ahs.v15i2.24

    Article  PubMed  PubMed Central  Google Scholar 

  98. Karar MGE, Kuhnert N (2017) Herbal drugs from Sudan: traditional uses and phytoconstituents. Pharmacogn Rev 11(22):83–103. https://doi.org/10.4103/phrev.phrev_15_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oguntibeju OO, Meyer S, Aboua YG, Goboza M (2016) Hypoxis hemerocallidea significantly reduced hyperglycaemia and hyperglycaemic-induced oxidative stress in the liver and kidney tissues of streptozotocin-induced diabetic male wistar rats. Evid-Based Compl Alt:10. https://doi.org/10.1155/2016/8934362

  100. Muthaphuli N, Tshisikhawe MP (2016) Ethnomedicinal survey of plant species used by the Vhavenda people in the management of diabetes mellitus in Muraga Village, Vhembe District, Limpopo Province. S Afr J Bot 103:337–337. https://doi.org/10.1016/j.sajb.2016.02.127

    Article  Google Scholar 

  101. Bello OM, Fasinu PS, Bello OE, Ogbesejana AB, Adetunji CO, Dada AO, Ibitoye OS, Aloko S, Oguntoye OS (2019) Wild vegetable Rumex acetosa Linn.: its ethnobotany, pharmacology and phytochemistry – a review. S Afr J Bot 125:149–160. https://doi.org/10.1016/j.sajb.2019.04.018

    Article  CAS  Google Scholar 

  102. Adeneye AA, Olagunju AJ, Babatunde O, Oluyemi O, Awosope O, Oyekunle G, Ayuba H, Omoregie O, Omole O (2019) Morinda lucida Aqueous Stem Bark Extract Ameliorates Hepato-Renal Dysfunctions in experimental diabetes model. Niger J Physiol Sci 34(1):33–42

    CAS  PubMed  Google Scholar 

  103. Giovannini P, Howes MJ, Edwards SE (2016) Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: a review. J Ethnopharmacol 184:58–71. https://doi.org/10.1016/j.jep.2016.02.034

    Article  PubMed  Google Scholar 

  104. Laguna-Hernandez G, Rio-Zamorano CA, Meneses-Ochoa IG, Brechu-Franco AE (2017) Histochemistry and immunolocalisation of glucokinin in antidiabetic plants used in traditional Mexican medicine. Eur J Histochem 61(2):2782. https://doi.org/10.4081/ejh.2017.2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cadena-Zamudio JD, Klicasio-Torres MD, Guerrero-Analco JA, Ibarra-Laclette E (2019) Ethnopharmacological studies of Cecropia obtusifolia (Urticaceae) and its importance in the treatment of type 2 diabetes mellitus: a mini-review. Acta Bot Mex 126:12. https://doi.org/10.21829/abm126.2019.1361

  106. Revilla-Monsalve MC, Andrade-Cetto A, Palomino-Garibay MA, Wiedenfeld H, Islas-Andrade S (2007) Hypoglycemic effect of Cecropia obtusifolia Bertol aqueous extracts on type 2 diabetic patients. J Ethnopharmacol 111(3):636–640. https://doi.org/10.1016/j.jep.2007.01.014

    Article  PubMed  Google Scholar 

  107. Gonzalez-Yanez MGE, Rivas-Morales C, Oranday-Cardenas MA, Verde-Star MJ, Nunez-Gonzalez MA, Sanchez E, Leos-Rivas C (2019) Safety of Aqueous extract of Calea ternifolia used in mexican traditional medicine. Evid Based Complement Alternat Med 2019:7478152. https://doi.org/10.1155/2019/7478152

    Article  PubMed  PubMed Central  Google Scholar 

  108. Paiz RC, Juarez-Flores BI, Rivera JRA, Ortega NCC, Aguero JAR, Chavez EG, Fuentes GA (2010) Glucose-lowering effect of xoconostle (Opuntia joconostle A. Web., Cactaceae) in diabetic rats. J Med Plants Res 4(22):2326–2333

    Google Scholar 

  109. Medina-Pérez G, Zaldívar-Ortega AK, Cenobio-Galindo AJ, Afanador-Barajas LN, Vieyra-Alberto R, Estefes-Duarte JA, Campos-Montiel RG (2019) Antidiabetic activity of cactus acid fruit extracts: simulated intestinal conditions of the inhibitory effects on α-amylase and α-glucosidase. Appl Sci 9(19). https://doi.org/10.3390/app9194066

  110. Zolghadri Y, Fazeli M, Kooshki M, Shomali T, Karimaghayee N, Dehghani M (2014) Achillea Millefolium L. Hydro-Alcoholic extract protects pancreatic cells by down regulating IL-1beta and iNOS gene expression in diabetic rats. Int J Mol Cell Med 3(4):255–262

    PubMed  PubMed Central  Google Scholar 

  111. Chavez-Silva F, Ceron-Romero L, Arias-Duran L, Navarrete-Vazquez G, Almanza-Perez J, Roman-Ramos R, Ramirez-Avila G, Perea-Arango I, Villalobos-Molina R, Estrada-Soto S (2018) Antidiabetic effect of Achillea millefollium through multitarget interactions: alpha-glucosidases inhibition, insulin sensitization and insulin secretagogue activities. J Ethnopharmacol 212:1–7. https://doi.org/10.1016/j.jep.2017.10.005

    Article  PubMed  Google Scholar 

  112. Diaz-Flores M, Angeles-Mejia S, Baiza-Gutman LA, Medina-Navarro R, Hernandez-Saavedra D, Ortega-Camarillo C, Roman-Ramos R, Cruz M, Alarcon-Aguilar FJ (2012) Effect of an aqueous extract of Cucurbita ficifolia Bouche on the glutathione redox cycle in mice with STZ-induced diabetes. J Ethnopharmacol 144(1):101–108. https://doi.org/10.1016/j.jep.2012.08.036

    Article  CAS  PubMed  Google Scholar 

  113. Miranda-Perez ME, Ortega-Camarillo C, Del Carmen Escobar-Villanueva M, Blancas-Flores G, Alarcon-Aguilar FJ (2016) Cucurbita ficifolia Bouche increases insulin secretion in RINm5F cells through an influx of Ca(2+) from the endoplasmic reticulum. J Ethnopharmacol 188:159–166. https://doi.org/10.1016/j.jep.2016.04.061

    Article  PubMed  Google Scholar 

  114. Alusik S, Paluch Z (2015) Metformin: the past, presence, and future. Minerva Med 106(4):233–238

    CAS  PubMed  Google Scholar 

  115. Chan CC, Zhang HW, Chan K, Lin ZX (2016) Xiaoke Pill and anti-diabetic drugs: a review on clinical evidence of possible herb-drug interactions. Chin J Integr Med. https://doi.org/10.1007/s11655-015-2106-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Li, N. (2021). An Overview of Hypoglycemic Traditional Drugs. In: Chen, H., Zhang, M. (eds) Structure and Health Effects of Natural Products on Diabetes Mellitus. Springer, Singapore. https://doi.org/10.1007/978-981-15-8791-7_4

Download citation

Publish with us

Policies and ethics