Skip to main content

Conspectus of Structurally Distinct Groups of Histone Deacetylase Inhibitors of Classical Histone Deacetylases and Sirtuins

  • Chapter
  • First Online:
Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy

Abstract

Interplay of genetic and epigenetic dysregulation powers the onset and progression of cancer (Lund and van Lohuizen 2004). Proper execution of gene expression programs is potentially reliant on acetylation homeostasis (Fraga et al. 2005; Li and Seto 2016). Regulated by histone acetyltransferases (HATs) and their functional antagonists histone deacetylases (HDACs), this homeostasis drives cellular processes in a normal manner (Yang and Seto 2007). Anomalous expression/activity of HDACs contributes significantly to tumour onset and progression through epigenetic mechanism (Li and Seto 2016). Moreover, HDAC overactivity, by way of altering stability and functioning of non-histone proteins also facilitates cancer signalling (Ganai 2018; Singh et al. 2010). Although both HAT inactivity and HDAC overactivity have been noted in cancers, the latter is preferred for intervention (Marks et al. 2004). This is because from pharmacological standpoint it is highly straightforward to obstruct an enzyme instead of inducing one (Shabason et al. 2010). Due to this fact HDAC inhibition has gained a massive clinical interest as a potential strategy for subduing cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avendaño C, Menéndez JC (2015) Chapter 8 - Epigenetic therapy of cancer. In: Avendaño C, Menéndez JC (eds) Medicinal chemistry of anticancer drugs, 2nd edn. Elsevier, Boston, pp 325–358

    Chapter  Google Scholar 

  • Bhuiyan MP, Kato T, Okauchi T, Nishino N, Maeda S, Nishino TG, Yoshida M (2006) Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases. Bioorg Med Chem 14:3438–3446

    Article  CAS  PubMed  Google Scholar 

  • Bieliauskas AV, Pflum MKH (2008) Isoform-selective histone deacetylase inhibitors. Chem Soc Rev 37:1402–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose P, Grant S (2014) Orphan drug designation for pracinostat, volasertib and alvocidib in AML. Leuk Res 38

    Google Scholar 

  • Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6:238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campas-Moya C (2009) Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barcelona, Spain: 1998) 45:787–795

    Google Scholar 

  • Cao J, Lv W, Wang L, Xu J, Yuan P, Huang S, He Z, Hu J (2018) Ricolinostat (ACY-1215) suppresses proliferation and promotes apoptosis in esophageal squamous cell carcinoma via miR-30d/PI3K/AKT/mTOR and ERK pathways. Cell Death Dis 9:817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng YQ, Yang M, Matter AM (2007) Characterization of a gene cluster responsible for the biosynthesis of anticancer agent FK228 in Chromobacterium violaceum no. 968. Appl Environ Microbiol 73:3460–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun P (2015) Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 38:933–949

    Article  CAS  PubMed  Google Scholar 

  • Damaskos C, Garmpis N, Valsami S, Kontos M, Spartalis E, Kalampokas T, Kalampokas E, Athanasiou A, Moris D, Daskalopoulou A, Davakis S, Tsourouflis G, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D (2017) Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res 37:35–46

    Article  CAS  PubMed  Google Scholar 

  • Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18

    Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  CAS  PubMed  Google Scholar 

  • Frey RR, Wada CK, Garland RB, Curtin ML, Michaelides MR, Li J, Pease LJ, Glaser KB, Marcotte PA, Bouska JJ, Murphy SS, Davidsen SK (2002) Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg Med Chem Lett 12:3443–3447

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2014) HDAC inhibitors entinostat and suberoylanilide hydroxamic acid (SAHA): the ray of hope for cancer therapy. In: Wells RD, Bond JS, Klinman J, Masters BSS, Bell E (eds) Molecular life sciences: an encyclopedic reference. Springer, New York, pp 1–16

    Google Scholar 

  • Ganai SA (2016a) Histone deacetylase inhibitor sulforaphane: the phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 81:250–257

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2016b) Panobinostat: the small molecule metalloenzyme inhibitor with marvelous anticancer activity. Curr Top Med Chem 16:427–434

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2018) Histone deacetylase inhibitors modulating non-epigenetic players: the novel mechanism for small molecule based therapeutic intervention. Curr Drug Targets 19:593–601

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2019) Different groups of HDAC inhibitors based on various classifications. In: Ganai SA (ed) Histone deacetylase inhibitors — epidrugs for neurological disorders. Springer, Singapore, pp 33–38

    Chapter  Google Scholar 

  • Gey C, Kyrylenko S, Hennig L, Nguyen LH, Buttner A, Pham HD, Giannis A (2007) Phloroglucinol derivatives guttiferone G, aristoforin, and hyperforin: inhibitors of human sirtuins SIRT1 and SIRT2. Angew Chem Int Ed Engl 46:5219–5222

    Article  CAS  PubMed  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A 96:4868–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100:4389–4394

    Google Scholar 

  • Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, DePinho RA, Gu Y, Simon JA, Bedalov A (2006) Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66:4368–4377

    Article  CAS  PubMed  Google Scholar 

  • Hu J, He B, Bhargava S, Lin H (2013) A fluorogenic assay for screening Sirt6 modulators. Org Biomol Chem 11:5213–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Jing H, Lin H (2014) Sirtuin inhibitors as anticancer agents. Future Med Chem 6:945–966

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Almeciga-Pinto I, Jarpe M, van Duzer JH, Mazitschek R, Yang M, Jones SS, Quayle SN (2017) Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget 8:2694–2707

    Article  PubMed  Google Scholar 

  • Huber K, Schemies J, Uciechowska U, Wagner JM, Rumpf T, Lewrick F, Süss R, Sippl W, Jung M, Bracher F (2010) Novel 3-arylideneindolin-2-ones as inhibitors of NAD + -dependent histone deacetylases (sirtuins). J Med Chem 53:1383–1386

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, Gondal TA, Mubarak MS (2019) Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother 112:108612

    Article  CAS  PubMed  Google Scholar 

  • Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM (2003) Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem 278:50985–50998

    Article  CAS  PubMed  Google Scholar 

  • Kalle AM, Mallika A, Badiger J, Alinakhi, Talukdar P, Sachchidanand (2010) Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells. Biochem Biophys Res Commun 401:13–19

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589

    Article  CAS  PubMed  Google Scholar 

  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268:22429–22435

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Shin J, Kwon HJ (2007) Psammaplin a is a natural prodrug that inhibits class I histone deacetylase. Exp Mol Med 39:47–55

    Article  CAS  PubMed  Google Scholar 

  • Kiweler N, Wünsch D, Wirth M, Mahendrarajah N, Schneider G, Stauber RH, Brenner W, Butter F, Krämer OH (2020) Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes. J Cancer Res Clin Oncol 146:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinschek A, Meyners C, Digiorgio E, Brancolini C, Meyer-Almes FJ (2016) Potent and selective non-hydroxamate histone deacetylase 8 inhibitors. ChemMedChem 11:2598–2606

    Google Scholar 

  • Li Y, Woster PM (2015) Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. Medchemcomm 6:613–618

    Google Scholar 

  • Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6:a026831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao B, Sun Q, Yuan Y, Yin Y, Qiao J, Jiang P (2020) Histone deacetylase inhibitor MGCD0103 causes cell cycle arrest, apoptosis, and autophagy in liver cancer cells. J Cancer 11:1915–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobera M, Madauss KP, Pohlhaus DT, Wright QG, Trocha M, Schmidt DR, Baloglu E, Trump RP, Head MS, Hofmann GA, Murray-Thompson M, Schwartz B, Chakravorty S, Wu Z, Mander PK, Kruidenier L, Reid RA, Burkhart W, Turunen BJ, Rong JX, Wagner C, Moyer MB, Wells C, Hong X, Moore JT, Williams JD, Soler D, Ghosh S, Nolan MA (2013) Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol 9:319–325

    Google Scholar 

  • Lu X, Ning Z, Li Z, Cao H, Wang X (2016) Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable Rare Dis Res 5:185–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18:2315–2335

    Article  CAS  PubMed  Google Scholar 

  • Madsen AS, Olsen CA (2016) A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action. Med Chem Commun 7:464–470

    Article  CAS  Google Scholar 

  • Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Matsutani S, Sugita K, Yoshida H, Hayashi F, Terui Y, Nakai H, Uotani N, Kawamura Y, Matsumoto K et al (1992) Depudecin: a novel compound inducing the flat phenotype of NIH3T3 cells doubly transformed by ras- and src-oncogene, produced by Alternaria brassicicola. J Antibiot 45:879–885

    Article  CAS  Google Scholar 

  • McCarthy AR, Pirrie L, Hollick JJ, Ronseaux S, Campbell J, Higgins M, Staples OD, Tran F, Slawin AM, Lain S, Westwood NJ (2012) Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins. Bioorg Med Chem 20:1779–1793

    Article  CAS  PubMed  Google Scholar 

  • Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46:5097–5116

    Google Scholar 

  • Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules (Basel, Switzerland) 20:3898–3941

    Article  CAS  Google Scholar 

  • Mwakwari SC, Patil V, Guerrant W, Oyelere AK (2010) Macrocyclic histone deacetylase inhibitors. Curr Top Med Chem 10:1423–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napper AD, Hixon J, McDonagh T, Keavey K, Pons JF, Barker J, Yau WT, Amouzegh P, Flegg A, Hamelin E, Thomas RJ, Kates M, Jones S, Navia MA, Saunders JO, DiStefano PS, Curtis R (2005) Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem 48:8045–8054

    Article  CAS  PubMed  Google Scholar 

  • Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet J-C, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG (2007) Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. Science (New York, N.Y.) 317:516–519

    Article  CAS  Google Scholar 

  • Potharla VY, Wesener SR, Cheng Y-Q (2011) New insights into the genetic organization of the FK228 biosynthetic gene cluster in Chromobacterium violaceum no. 968. Appl Environ Microbiol 77:1508–1511

    Article  CAS  PubMed  Google Scholar 

  • Richa S, Dey P, Park C, Yang J, Son JY, Park JH, Lee SH, Ahn MY, Kim IS, Moon HR, Kim HS (2020) A new histone deacetylase inhibitor, MHY4381, induces apoptosis via generation of reactive oxygen species in human prostate cancer cells. Biomol Ther 28:184–194

    Article  Google Scholar 

  • Sanaei M, Kavoosi F (2019) Histone deacetylases and histone deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv Biomed Res 8:63–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN (2007) Structural basis of inhibition of the human NAD + -dependent deacetylase SIRT5 by suramin. Structure 15:377–389

    Article  CAS  PubMed  Google Scholar 

  • Shabason JE, Tofilon PJ, Camphausen K (2010) HDAC inhibitors in cancer care. Oncology (Williston Park, N.Y.) 24:180–185

    Google Scholar 

  • Singh S, Zink D, Polishook J, Dombrowski A, Rattray S, Schmatz D, Goetz M (1996) Apicidins: novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett 37:8077–8080

    Article  CAS  Google Scholar 

  • Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang S-W (2010) Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 10:935–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BC, Denu JM (2007) Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46:14478–14486

    Article  CAS  PubMed  Google Scholar 

  • Son IH, Chung IM, Lee SI, Yang HD, Moon HI (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li J, Xu Z, Xu J, Shi M, Liu P (2019) Chidamide, a novel histone deacetylase inhibitor, inhibits multiple myeloma cells proliferation through succinate dehydrogenase subunit a. Am J Cancer Res 9:574–584

    PubMed  PubMed Central  Google Scholar 

  • Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8

    Google Scholar 

  • Suzuki T, Khan MN, Sawada H, Imai E, Itoh Y, Yamatsuta K, Tokuda N, Takeuchi J, Seko T, Nakagawa H, Miyata N (2012) Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J Med Chem 55:5760–5773

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Fujimori T, Nabeta K (2000) Biosynthesis of depudecin, a metabolite of Nimbya scirpicola. Biosci Biotechnol Biochem 64:244–247

    Article  CAS  PubMed  Google Scholar 

  • Taori K, Paul V, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine Cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807

    Article  CAS  PubMed  Google Scholar 

  • Tervo AJ, Kyrylenko S, Niskanen P, Salminen A, Leppanen J, Nyronen TH, Jarvinen T, Poso A (2004) An in silico approach to discovering novel inhibitors of human sirtuin type 2. J Med Chem 47:6292–6298

    Article  CAS  PubMed  Google Scholar 

  • Thaler F, Mercurio C (2014) Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 9:523–526

    Article  CAS  PubMed  Google Scholar 

  • Trapp J, Jochum A, Meier R, Saunders L, Marshall B, Kunick C, Verdin E, Goekjian P, Sippl W, Jung M (2006) Adenosine mimetics as inhibitors of NAD + -dependent histone deacetylases, from kinase to sirtuin inhibition. J Med Chem 49:7307–7316

    Article  CAS  PubMed  Google Scholar 

  • Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M (2007) Structure-activity studies on suramin analogues as inhibitors of NAD + -dependent histone deacetylases (sirtuins). ChemMedChem 2:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K (1976) A new antifungal antibiotic, trichostatin. J Antibiot 29:1–6

    Article  CAS  Google Scholar 

  • Valente S, Conte M, Tardugno M, Nebbioso A, Tinari G, Altucci L, Mai A (2012) Developing novel non-hydroxamate histone deacetylase inhibitors: the chelidamic warhead. MedChemComm 3:298–304

    Google Scholar 

  • Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 7:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Stowe RL, Pinello CE, Tian G, Madoux F, Li D, Zhao LY, Li JL, Wang Y, Wang Y, Ma H, Hodder P, Roush WR, Liao D (2015) Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem Biol 22:273–284

    Google Scholar 

  • Yan X, Qi M, Li P, Zhan Y, Shao H (2017) Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 7:50–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–5318

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhao N, Ge D, Chen Y (2019) Next-generation of selective histone deacetylase inhibitors. RSC Adv 9:19571–19583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee AJ, Bensinger W, Voorhees PM, Berdeja JG, Richardson PG, Supko J, Tamang D, Jones SS, Wheeler C, Markelewicz RJ Jr, Raje NS (2015) Ricolinostat (ACY-1215), the first selective HDAC6 inhibitor, in combination with lenalidomide and dexamethasone in patients with relapsed and relapsed-and-refractory multiple myeloma: phase 1b results (ACE-MM-101 study). Blood 126:3055–3055

    Article  Google Scholar 

  • Yuan H, Wang Z, Li L, Zhang H, Modi H, Horne D, Bhatia R, Chen W (2012) Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood 119:1904–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu W (2015) Isoform-selective histone deacetylase inhibitors: the trend and promise of disease treatment. Epigenomics 7:5–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Au Q, Zhang M, Barber J, Ng S, Zhang B (2009) Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun 386:729–733

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, Ye Q, Meroueh SO, Lu H (2012) A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol Med 4:298–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang J, Jiang Q, Zhang L, Song W (2018) Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem 33:714–721

    Google Scholar 

  • Zhao C, Dong H, Xu Q, Zhang Y (2020) Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin Ther Pat 30:263–274

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganai, S.A. (2020). Conspectus of Structurally Distinct Groups of Histone Deacetylase Inhibitors of Classical Histone Deacetylases and Sirtuins. In: Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8179-3_8

Download citation

Publish with us

Policies and ethics