Skip to main content
Log in

Histone deacetylase inhibitors in hematological malignancies and solid tumors

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Histone deacetylase (HDAC) inhibitors are emerging as promising anticancer drugs. Because aberrant activity and expression of HDACs have been implicated in various cancer types, a wide range of HDAC inhibitors are being investigated as anticancer agents. Furthermore, due to the demonstrable anticancer activity in both in vitro and in vivo studies, numerous HDAC inhibitors have undergone a rapid phase of clinical development in various cancer types, either as a monotherapy or in combination with other anticancer agents. Although preclinical trials show that HDAC inhibitors have a variety of biological effects across multiple pathways, including regulation of gene expression, inducing apoptosis and cell cycle arrest, inhibiting angiogenesis, and regulation of DNA damage and repair, the mechanism by which the clinical activity is mediated remains unclear. Understanding the mechanisms of anticancer activity of HDAC inhibitors is essential not only for rational drug design for targeted therapies, but for the design of optimized clinical protocols. This paper describes the links between HDACs and cancer, and the underlying mechanisms of action of HDAC inhibitors against hematological malignancies and solid tumors. Further, this review presents the clinical outcomes of vorinostat, romidepsin, and belinostat, which are approved by the United States Food and Drug Administration for the treatment of lymphomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, H., F.R. Fritzsche, S. Dirnhofer, G. Kristiansen, and A. Tzankov. 2010. Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin’s lymphoma. Expert Opinion on Therapeutic Targets 14: 577–584.

    CAS  PubMed  Google Scholar 

  • Amann, J.M., J. Nip, D.K. Strom, B. Lutterbach, H. Harada, N. Lenny, J.R. Downing, S. Meyers, and S.W. Hiebert. 2001. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Molecular and Cellular Biology 21: 6470–6483.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashkenazi, A. 2002. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Reviews Cancer 2: 420–430.

    CAS  PubMed  Google Scholar 

  • Atsumi, A., A. Tomita, H. Kiyoi, and T. Naoe. 2006. Histone deacetylase 3 (HDAC3) is recruited to target promoters by PML–RARalpha as a component of the N-CoR co-repressor complex to repress transcription in vivo. Biochemical and Biophysical Research Communications 345: 1471–1480.

    CAS  PubMed  Google Scholar 

  • Bagnes, C., P.N. Panchuk, and G. Recondo. 2010. Antineoplastic chemotherapy induced QTc prolongation. Current Drug Safety 5: 93–96.

    CAS  PubMed  Google Scholar 

  • Bakkenist, C.J., and M.B. Kastan. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    CAS  PubMed  Google Scholar 

  • Bali, P., M. Pranpat, J. Bradner, M. Balasis, W. Fiskus, F. Guo, K. Rocha, S. Kumaraswamy, S. Boyapalle, P. Atadja, E. Seto, and K. Bhalla. 2005. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis for antileukemia activity of histone deacetylase inhibitors. Journal of Biological Chemistry 280: 26729–26734.

    CAS  PubMed  Google Scholar 

  • Bantscheff, M., C. Hopf, M.M. Savitski, A. Dittmann, P. Grandi, A.M. Michon, J. Schlegl, Y. Abraham, I. Becher, G. Bergamini, M. Boesche, M. Delling, B. Dümpelfeld, D. Eberhard, C. Huthmacher, T. Mathieson, D. Poeckel, V. Reader, K. Strunk, G. Sweetman, U. Kruse, G. Neubauer, N.G. Ramsden, and G. Drewes. 2011. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotechnology 29: 255–265.

    CAS  PubMed  Google Scholar 

  • Bates, S.E., D.R. Rosing, T. Fojo, and R.L. Piekarz. 2006. Challenges of evaluating the cardiac effects of anticancer agents. Clinical Cancer Research 12: 3871–3874.

    CAS  PubMed  Google Scholar 

  • Bertos, N.R., A.H. Wang, and X.J. Yang. 2001. Class II histone deacetylases: Structure, function, and regulation. Biochemistry and Cell Biology 79: 243–252.

    CAS  PubMed  Google Scholar 

  • Bertrand, P. 2010. Inside HDAC with HDAC inhibitors. European Journal of Medicinal Chemistry 45: 2095–2116.

    CAS  PubMed  Google Scholar 

  • Blumenschein Jr., G.R., M.S. Kies, V.A. Papadimitrakopoulou, C. Lu, A.J. Kumar, J.L. Ricker, J.H. Chiao, C. Chen, and S.R. Frankel. 2008. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Investigational New Drugs 26: 81–87.

    CAS  PubMed  Google Scholar 

  • Bolden, J.E., M.J. Peart, and R.W. Johnstone. 2006. Anticancer activities of histone deacetylase inhibitors. Nature Reviews Drug Discovery 5: 769–784.

    CAS  PubMed  Google Scholar 

  • Bradley, D., D. Rathkopf, R. Dunn, W.M. Stadler, G. Liu, D.C. Smith, R. Pili, J. Zwiebel, H. Scher, and M. Hussain. 2009. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): Trial results and interleukin-6 analysis: A study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer 115: 5541–5549.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradner, J.E., N. West, M.L. Grachan, E.F. Greenberg, S.J. Haggarty, T. Warnow, and R. Mazitschek. 2010. Chemical phylogenetics of histone deacetylases. Nature Chemical Biology 6: 238–243.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burgess, A., A. Ruefli, H. Beamish, R. Warrener, N. Saunders, R. Johnstone, and B. Gabrielli. 2004. Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23: 6693–6701.

    CAS  PubMed  Google Scholar 

  • Burz, C., I. Berindan-Neagoe, O. Balacescu, and A. Irimie. 2009. Apoptosis in cancer: Key molecular signaling pathways and therapy targets. Acta Oncologica 48: 811–821.

    CAS  PubMed  Google Scholar 

  • Cashen, A., M. Juckett, A. Jumonville, M. Litzow, P.J. Flynn, J. Eckardt, B. LaPlant, K. Laumann, C. Erlichman, and J. DiPersio. 2012. Phase II study of the histone deacetylase inhibitor belinostat (PXD101) for the treatment of myelodysplastic syndrome (MDS). Annals of Hematology 91: 33–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cha, T.L., M.J. Chuang, S.T. Wu, G.H. Sun, S.Y. Chang, D.S. Yu, S.M. Huang, S.K. Huan, T.C. Cheng, T.T. Chen, P.L. Fan, and P.W. Hsiao. 2009. Dual degradation of aurora A and B kinases by the histone deacetylase inhibitor LBH589 induces G2–M arrest and apoptosis of renal cancer cells. Clinical Cancer Research 15: 840–850.

    CAS  PubMed  Google Scholar 

  • Chen, L.f., W. Fischle, E. Verdin, and W.C. Greene. 2001. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293: 1653–1657.

    CAS  Google Scholar 

  • Chen, C.S., Y.C. Wang, H.C. Yang, P.H. Huang, S.K. Kulp, C.C. Yang, Y.S. Lu, S. Matsuyama, C.Y. Chen, and C.S. Chen. 2007. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Research 67: 5318–5327.

    CAS  PubMed  Google Scholar 

  • ClinicalTrials.gov. BELIEF study. http://clinicaltrials.gov/show/NCT00865969. Accessed 21 Nov 2014.

  • Coiffier, B., B. Pro, H.M. Prince, F. Foss, L. Sokol, M. Greenwood, D. Caballero, P. Borchmann, F. Morschhauser, M. Wilhelm, L. Pinter-Brown, S. Padmanabhan, A. Shustov, J. Nichols, S. Carroll, J. Balser, B. Balser, and S. Horwitz. 2012. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. Journal of Clinical Oncology 30: 631–636.

    CAS  PubMed  Google Scholar 

  • Curran, M.E., I. Splawski, K.W. Timothy, G.M. Vincent, E.D. Green, and M.T. Keating. 1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80: 795–803.

    CAS  PubMed  Google Scholar 

  • de Ruijter, A.J., A.H. van Gennip, H.N. Caron, S. Kemp, and A.B. van Kuilenburg. 2003. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal 370: 737–749.

    PubMed Central  PubMed  Google Scholar 

  • Decroos, C., C.M. Bowman, J.A. Moser, K.E. Christianson, M.A. Deardorff, and D.W. Christianson. 2014. Compromised structure and function of HDAC8 mutants identified in Cornelia de Lange Syndrome spectrum disorders. ACS Chemical Biology 9: 2157–2164.

    CAS  PubMed  Google Scholar 

  • Deubzer, H.E., M.C. Schier, I. Oehme, M. Lodrini, B. Haendler, A. Sommer, and O. Witt. 2013. HDAC11 is a novel drug target in carcinomas. International Journal of Cancer 132: 2200–2208.

    CAS  Google Scholar 

  • Drugs@FDA. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Accessed 21 Nov 2014.

  • Duvic, M., R. Talpur, X. Ni, C. Zhang, P. Hazarika, C. Kelly, J.H. Chiao, J.F. Reilly, J.L. Ricker, V.M. Richon, and S.R. Frankel. 2006. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109: 31–39.

    PubMed  Google Scholar 

  • El-Khoury, V., S. Pierson, E. Szwarcbart, N.H. Brons, O. Roland, S. Cherrier-De Wilde, L. Plawny, E. Van Dyck, and G. Berchem. 2014. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia 28: 1636–1646.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fath, D.M., X. Kong, D. Liang, Z. Lin, A. Chou, Y. Jiang, J. Fang, J. Caro, and N. Sang. 2006. Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. Journal of Biological Chemistry 281: 13612–13619.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng, G.W., L.D. Dong, W.J. Shang, X.L. Pang, J.F. Li, L. Liu, and Y. Wang. 2014. HDAC5 promotes cell proliferation in human hepatocellular carcinoma by up-regulating Six1 expression. European Review for Medical and Pharmacological Sciences 18: 811–816.

    PubMed  Google Scholar 

  • Firestein, R., G. Blander, S. Michan, P. Oberdoerffer, S. Ogino, J. Campbell, A. Bhimavarapu, S. Luikenhuis, R. de Cabo, C. Fuchs, W.C. Hahn, L.P. Guarente, and D.A. Sinclair. 2008. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3: e2020.

    PubMed Central  PubMed  Google Scholar 

  • Fischle, W., V. Kiermer, F. Dequiedt, and E. Verdin. 2001. The emerging role of class II histone deacetylases. Biochemistry and Cell Biology 79: 337–348.

    CAS  PubMed  Google Scholar 

  • Foss, F., R. Advani, M. Duvic, K.B. Hymes, T. Intragumtornchai, A. Lekhakula, O. Shpilberg, A. Lerner, R.J. Belt, E.D. Jacobsen, G. Laurent, D. Ben-Yehuda, M. Beylot-Barry, U. Hillen, P. Knoblauch, G. Bhat, S. Chawla, L.F. Allen, and B. Pohlman. 2014. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma (Abstract). British Journal of Haematology. doi:10.1111/bjh.13222.

    Google Scholar 

  • Fournel, M., C. Bonfils, Y. Hou, P.T. Yan, M.C. Trachy-Bourget, A. Kalita, J. Liu, A.H. Lu, N.Z. Zhou, M.F. Robert, J. Gillespie, J.J. Wang, H. Ste-Croix, J. Rahil, S. Lefebvre, O. Moradei, D. Delorme, A.R. Macleod, J.M. Besterman, and Z. Li. 2008. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Molecular Cancer Therapeutics 7: 759–768.

    CAS  PubMed  Google Scholar 

  • Fraga, M.F., E. Ballestar, A. Villar-Garea, M. Boix-Chornet, J. Espada, G. Schotta, T. Bonaldi, C. Haydon, S. Ropero, K. Petrie, N.G. Iyer, A. Pérez-Rosado, E. Calvo, J.A. Lopez, A. Cano, M.J. Calasanz, D. Colomer, M.A. Piris, N. Ahn, A. Imhof, C. Caldas, T. Jenuwein, and M. Esteller. 2005. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics 37: 391–400.

    CAS  PubMed  Google Scholar 

  • Fritzsche, F.R., W. Weichert, A. Roske, V. Gekeler, T. Beckers, C. Stephan, K. Jung, K. Scholman, C. Denkert, M. Dietel, and G. Kristiansen. 2008. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 8: 381.

    PubMed Central  PubMed  Google Scholar 

  • Furumai, R., A. Matsuyama, N. Kobashi, K.H. Lee, M. Nishiyama, H. Nakajima, A. Tanaka, Y. Komatsu, N. Nishino, M. Yoshida, and S. Horinouchi. 2002. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Research 62: 4916–4921.

    CAS  PubMed  Google Scholar 

  • Gao, L., M.A. Cueto, F. Asselbergs, and P. Atadja. 2002. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry 277: 25748–25755.

    CAS  PubMed  Google Scholar 

  • Garcia-Manero, G., H. Yang, C. Bueso-Ramos, A. Ferrajoli, J. Cortes, W.G. Wierda, S. Faderl, C. Koller, G. Morris, G. Rosner, A. Loboda, V.R. Fantin, S.S. Randolph, J.S. Hardwick, J.F. Reilly, C. Chen, J.L. Ricker, J.P. Secrist, V.M. Richon, S.R. Frankel, and H.M. Kantarjian. 2008. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111: 1060–1066.

    CAS  PubMed  Google Scholar 

  • Gaughan, L., I.R. Logan, S. Cook, D.E. Neal, and C.N. Robson. 2002. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. Journal of Biological Chemistry 277: 25904–25913.

    CAS  PubMed  Google Scholar 

  • Gelmetti, V., J.S. Zhang, M. Fanelli, S. Minucci, P.G. Pelicci, and M.A. Lazar. 1998. Aberrant recruitment of the nuclear receptor corepressor–histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Molecular and Cellular Biology 18: 7185–7191.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geng, L., K.C. Cuneo, A. Fu, T. Tu, P.W. Atadja, and D.E. Hallahan. 2006. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Research 66: 11298–11304.

    CAS  PubMed  Google Scholar 

  • Giaccone, G., A. Rajan, A. Berman, R.J. Kelly, E. Szabo, A. Lopez-Chavez, J. Trepel, M.J. Lee, L. Cao, I. Espinoza-Delgado, J. Spittler, and P.J. Loehrer Sr. 2011. Phase II study of belinostat in patients with recurrent or refractory advanced thymic epithelial tumors. Journal of Clinical Oncology 29: 2052–2059.

    PubMed Central  PubMed  Google Scholar 

  • Gobinet, J., S. Carascossa, V. Cavaillès, F. Vignon, J.C. Nicolas, and S. Jalaguier. 2005. SHP represses transcriptional activity via recruitment of histone deacetylases. Biochemistry 44: 6312–6320.

    CAS  PubMed  Google Scholar 

  • Gregoretti, I.V., Y.M. Lee, and H.V. Goodson. 2004. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology 338: 17–31.

    CAS  PubMed  Google Scholar 

  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.

    CAS  PubMed  Google Scholar 

  • Gui, C.Y., L. Ngo, W.S. Xu, V.M. Richon, and P.A. Marks. 2004. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proceedings of the National Academy of Sciences of USA 101: 1241–1246.

    CAS  Google Scholar 

  • Haigentz Jr., M., M. Kim, C. Sarta, J. Lin, R.S. Keresztes, B. Culliney, A.G. Gaba, R.V. Smith, G.I. Shapiro, L.R. Chirieac, J.M. Mariadason, T.J. Belbin, J.M. Greally, J.J. Wright, and R.I. Haddad. 2012. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncology 48: 1281–1288.

    PubMed Central  PubMed  Google Scholar 

  • Halkidou, K., L. Gaughan, S. Cook, H.Y. Leung, D.E. Neal, and C.N. Robson. 2004. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59: 177–189.

    CAS  PubMed  Google Scholar 

  • Hayashi, A., A. Horiuchi, N. Kikuchi, T. Hayashi, C. Fuseya, A. Suzuki, I. Konishi, and T. Shiozawa. 2010. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. International Journal of Cancer 127: 1332–1346.

    CAS  Google Scholar 

  • Heltweg, B., T. Gatbonton, A.D. Schuler, J. Posakony, H. Li, S. Goehle, R. Kollipara, R.A. Depinho, Y. Gu, J.A. Simon, and A. Bedalov. 2006. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Research 66: 4368–4377.

    CAS  PubMed  Google Scholar 

  • Hitomi, T., Y. Matsuzaki, T. Yokota, Y. Takaoka, and T. Sakai. 2003. p15(INK4b) in HDAC inhibitor-induced growth arrest. FEBS Letters 554: 347–350.

    CAS  PubMed  Google Scholar 

  • Hörlein, A.J., A.M. Näär, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Söderström, C.K. Glass, and M.G. Rosenfeld. 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.

    PubMed  Google Scholar 

  • Hu, E., E. Dul, C.M. Sung, Z. Chen, R. Kirkpatrick, G.F. Zhang, K. Johanson, R. Liu, A. Lago, G. Hofmann, R. Macarron, M. de los Frailes, P. Perez, J. Krawiec, J. Winkler, and M. Jaye. 2003. Identification of novel isoform-selective inhibitors within class I histone deacetylases. Journal of Pharmacology and Experimental Therapeutics 307: 720–728.

    CAS  PubMed  Google Scholar 

  • Hutt, D.M., D.M. Roth, H. Vignaud, C. Cullin, and M. Bouchecareilh. 2014. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS ONE 9: e106224.

    PubMed Central  PubMed  Google Scholar 

  • Insinga, A., S. Monestiroli, S. Ronzoni, V. Gelmetti, F. Marchesi, A. Viale, L. Altucci, C. Nervi, S. Minucci, and P.G. Pelicci. 2005. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Medicine 11: 71–76.

    CAS  PubMed  Google Scholar 

  • Iwamoto, F.M., K.R. Lamborn, J.G. Kuhn, P.Y. Wen, W.K. Yung, M.R. Gilbert, S.M. Chang, F.S. Lieberman, M.D. Prados, and H.A. Fine. 2011. A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03. Neurooncology 13: 509–516.

    CAS  Google Scholar 

  • Jin, Y.H., E.J. Jeon, Q.L. Li, Y.H. Lee, J.K. Choi, W.J. Kim, K.Y. Lee, and S.C. Bae. 2004. Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. Journal of Biological Chemistry 279: 29409–29417.

    CAS  PubMed  Google Scholar 

  • Johnstone, R.W. 2002. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nature Reviews Drug Discovery 1: 287–299.

    CAS  PubMed  Google Scholar 

  • Jung, K.H., J.H. Noh, J.K. Kim, J.W. Eun, H.J. Bae, H.J. Xie, Y.G. Chang, M.G. Kim, H. Park, J.Y. Lee, and S.W. Nam. 2012. HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. Journal of Cellular Biochemistry 113: 2167–2177.

    CAS  PubMed  Google Scholar 

  • Kato, H., S. Tamamizu-Kato, and F. Shibasaki. 2004. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. Journal of Biological Chemistry 279: 41966–41974.

    CAS  PubMed  Google Scholar 

  • Kawai, H., H. Li, S. Avraham, S. Jiang, and H.K. Avraham. 2003. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. International Journal of Cancer 107: 353–358.

    CAS  Google Scholar 

  • Kelly, W.K., O.A. O’Connor, L.M. Krug, J.H. Chiao, M. Heaney, T. Curley, B. MacGregore-Cortelli, W. Tong, J.P. Secrist, L. Schwartz, S. Richardson, E. Chu, S. Olgac, P.A. Marks, H. Scher, and V.M. Richon. 2005. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. Journal of Clinical Oncology 23: 3923–3931.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan, N., M. Jeffers, S. Kumar, C. Hackett, F. Boldog, N. Khramtsov, X. Qian, E. Mills, S.C. Berghs, N. Carey, P.W. Finn, L.S. Collins, A. Tumber, J.W. Ritchie, P.B. Jensen, H.S. Lichenstein, and M. Sehested. 2008. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochemical Journal 409: 581–589.

    CAS  PubMed  Google Scholar 

  • Kim, M.S., H.J. Kwon, Y.M. Lee, J.H. Baek, J.E. Jang, S.W. Lee, E.J. Moon, H.S. Kim, S.K. Lee, H.Y. Chung, C.W. Kim, and K.W. Kim. 2001. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Medicine 7: 437–443.

    PubMed  Google Scholar 

  • Kim, S.H., J.W. Jeong, J.A. Park, J.W. Lee, J.H. Seo, B.K. Jung, M.K. Bae, and K.W. Kim. 2007. Regulation of the HIF-1alpha stability by histone deacetylases. Oncology Reports 17: 647–651.

    CAS  PubMed  Google Scholar 

  • Kim, M.K., Y.J. Kang, D.H. Kim, M.A. Hossain, J.Y. Jang, S.H. Lee, J.H. Yoon, P. Chun, H.R. Moon, H.S. Kim, H.Y. Chung, and N.D. Kim. 2014. A novel hydroxamic acid derivative, MHY218, induces apoptosis and cell cycle arrest through downregulation of NF-κB in HCT116 human colon cancer cells. International Journal of Oncology 44: 256–264.

    CAS  PubMed  Google Scholar 

  • Kirschbaum, M., P. Frankel, L. Popplewell, J. Zain, M. Delioukina, V. Pullarkat, D. Matsuoka, B. Pulone, A.J. Rotter, I. Espinoza-Delgado, A. Nademanee, S.J. Forman, D. Gandara, and E. Newman. 2011. Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. Journal of Clinical Oncology 29: 1198–1203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong, X., Z. Lin, D. Liang, D. Fath, N. Sang, and J. Caro. 2006. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Molecular and Cellular Biology 26: 2019–2028.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konstantinopoulos, P.A., A.J. Wilson, J. Saskowski, E. Wass, and D. Khabele. 2014. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer. Gynecologic Oncology 133: 599–606.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koprinarova, M., P. Botev, and G. Russev. 2011. Histone deacetylase inhibitor sodium butyrate enhances cellular radiosensitivity by inhibiting both DNA nonhomologous end joining and homologous recombination. DNA Repair (Amsterdam) 10: 970–977.

    CAS  Google Scholar 

  • Kouzarides, T. 1999. Histone acetylases and deacetylases in cell proliferation. Current Opinion in Genetics and Development 9: 40–48.

    CAS  PubMed  Google Scholar 

  • Kovacs, J.J., P.J. Murphy, S. Gaillard, X. Zhao, J.T. Wu, C.V. Nicchitta, M. Yoshida, D.O. Toft, W.B. Pratt, and T.P. Yao. 2005. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular Cell 18: 601–607.

    CAS  PubMed  Google Scholar 

  • Lassen, U., L.R. Molife, M. Sorensen, S.A. Engelholm, L. Vidal, R. Sinha, R.T. Penson, P. Buhl-Jensen, E. Crowley, J. Tjornelund, P. Knoblauch, and J.S. de Bono. 2010. A phase I study of the safety and pharmacokinetics of the histone deacetylase inhibitor belinostat administered in combination with carboplatin and/or paclitaxel in patients with solid tumours. British Journal of Cancer 103: 12–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, Y.M., S.H. Kim, H.S. Kim, M. Jin Son, H. Nakajima, H. Jeong Kwon, and K.W. Kim. 2003. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochemical and Biophysical Research Communications 300: 241–246.

    CAS  Google Scholar 

  • Li, D., X. Sun, L. Zhang, B. Yan, S. Xie, R. Liu, M. Liu, and J. Zhou. 2014. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein and Cell 5: 214–223.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin, R.J., L. Nagy, S. Inoue, W.L. Shao, W.H. Miller, and R.M. Evans. 1998. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391: 811–814.

    CAS  PubMed  Google Scholar 

  • Luo, J., F. Su, D. Chen, A. Shiloh, and W. Gu. 2000. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408: 377–381.

    CAS  PubMed  Google Scholar 

  • Luu, T.H., R.J. Morgan, L. Leong, D. Lim, M. McNamara, J. Portnow, P. Frankel, D.D. Smith, J.H. Doroshow, C. Wong, A. Aparicio, D.R. Gandara, and G. Somlo. 2008. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: A California Cancer Consortium study. Clinical Cancer Research 14: 7138–7142.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch Jr., D.R., J.B. Washam, and L.K. Newby. 2012. QT interval prolongation and torsades de pointes in a patient undergoing treatment with vorinostat: A case report and review of the literature. Cardiology Journal 19: 434–438.

    PubMed  Google Scholar 

  • Mackay, H.J., H. Hirte, T. Colgan, A. Covens, K. MacAlpine, P. Grenci, L. Wang, J. Mason, P.A. Pham, M.S. Tsao, J. Pan, J. Zwiebel, and A.M. Oza. 2010. Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours. European Journal of Cancer 46: 1573–1579.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mal, A., and M.L. Harter. 2003. MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proceedings of the National Academy of Sciences of USA 100: 1735–1739.

    CAS  Google Scholar 

  • Mal, A., M. Sturniolo, R.L. Schiltz, M.K. Ghosh, and M.L. Harter. 2001. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: Inhibition of the myogenic program. EMBO Journal 20: 1735–1739.

    Google Scholar 

  • Mann, B.S., J.R. Johnson, M.H. Cohen, R. Justice, and R. Pazdur. 2007. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12: 1247–1252.

    CAS  PubMed  Google Scholar 

  • Marks, P., R.A. Rifkind, V.M. Richon, R. Breslow, T. Miller, and W.K. Kelly. 2001. Histone deacetylases and cancer: Causes and therapies. Nature Reviews Cancer 1: 194–202.

    CAS  PubMed  Google Scholar 

  • Marquard, L., L.M. Gjerdrum, I.J. Christensen, P.B. Jensen, M. Sehested, and E. Ralfkiaer. 2008. Prognostic significance of the therapeutic targets histone deacetylase 1, 2, 6 and acetylated histone H4 in cutaneous T-cell lymphoma. Histopathology 53: 267–277.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez-Balbás, M.A., U.M. Bauer, S.J. Nielsen, A. Brehm, and T. Kouzarides. 2000. Regulation of E2F1 activity by acetylation. EMBO Journal 19: 662–671.

    PubMed Central  PubMed  Google Scholar 

  • Milde, T., I. Oehme, A. Korshunov, A. Kopp-Schneider, M. Remke, P. Northcott, H.E. Deubzer, M. Lodrini, M.D. Taylor, A. von Deimling, S. Pfister, and O. Witt. 2010. HDAC5 and HDAC9 in medulloblastoma: Novel markers for risk stratification and role in tumor cell growth. Clinical Cancer Research 16: 3240–3252.

    CAS  PubMed  Google Scholar 

  • Minamiya, Y., T. Ono, H. Saito, N. Takahashi, M. Ito, M. Mitsui, S. Motoyama, and J. Ogawa. 2011. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer 74: 300–304.

    PubMed  Google Scholar 

  • Modesitt, S.C., M. Sill, J.S. Hoffman, D.P. Bender, and Gynecologic Oncology Group. 2008. A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: A Gynecologic Oncology Group study. Gynecologic Oncology 109: 182–186.

    CAS  PubMed  Google Scholar 

  • Molife, L.R., G. Attard, P.C. Fong, V. Karavasilis, A.H. Reid, S. Patterson, C.E. Riggs Jr., C. Higano, W.M. Stadler, W. McCulloch, D. Dearnaley, C. Parker, and J.S. de Bono. 2010. Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Annals of Oncology 21: 109–113.

    CAS  PubMed  Google Scholar 

  • Montgomery, R.L., C.A. Davis, M.J. Potthoff, M. Haberland, J. Fielitz, X. Qi, J.A. Hill, J.A. Richardson, and E.N. Olson. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes and Development 21: 1790–1802.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno, D.A., C.A. Scrideli, M.A. Cortez, R. de Paula Queiroz, E.T. Valera, V. da Silva Silveira, J.A. Yunes, S.R. Brandalise, and L.G. Tone. 2010. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. British Journal of Haematology 150: 665–673.

    CAS  PubMed  Google Scholar 

  • Müller, B.M., L. Jana, A. Kasajima, A. Lehmann, J. Prinzler, J. Budczies, K.J. Winzer, M. Dietel, W. Weichert, and C. Denkert. 2013. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer—Overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer 13: 215.

    PubMed Central  PubMed  Google Scholar 

  • Munshi, A., J.F. Kurland, T. Nishikawa, T. Tanaka, M.L. Hobbs, S.L. Tucker, S. Ismail, C. Stevens, and R.E. Meyn. 2005. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clinical Cancer Research 11: 4912–4922.

    CAS  PubMed  Google Scholar 

  • Mwakwari, S.C., V. Patil, W. Guerrant, and A.K. Oyelere. 2010. Macrocyclic histone deacetylase inhibitors. Current Topics in Medicinal Chemistry 10: 1423–1440.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noh, E.J., D.S. Lim, G. Jeong, and J.S. Lee. 2009. An HDAC inhibitor, trichostatin A, induces a delay at G2/M transition, slippage of spindle checkpoint, and cell death in a transcription-dependent manner. Biochemical and Biophysical Research Communications 378: 326–331.

    CAS  PubMed  Google Scholar 

  • Norton, V.G., B.S. Imai, P. Yau, and E.M. Bradbury. 1989. Histone acetylation reduces nucleosome core particle linking number change. Cell 57: 449–457.

    CAS  PubMed  Google Scholar 

  • Oehme, I., H.E. Deubzer, D. Wegener, D. Pickert, J.P. Linke, B. Hero, A. Kopp-Schneider, F. Westermann, S.M. Ulrich, A. von Deimling, M. Fischer, and O. Witt. 2009. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clinical Cancer Research 15: 91–99.

    CAS  PubMed  Google Scholar 

  • Ogura, M., K. Ando, T. Suzuki, K. Ishizawa, S.Y. Oh, K. Itoh, K. Yamamoto, W.Y. Au, H.F. Tien, Y. Matsuno, T. Terauchi, K. Yamamoto, M. Mori, Y. Tanaka, T. Shimamoto, K. Tobinai, and W.S. Kim. 2014. A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. British Journal of Haematology 165: 768–776.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen, E.A., Y.H. Kim, T.M. Kuzel, T.R. Pacheco, F.M. Foss, S. Parker, S.R. Frankel, C. Chen, J.L. Ricker, J.M. Arduino, and M. Duvic. 2007. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. Journal of Clinical Oncology 25: 3109–3115.

    CAS  PubMed  Google Scholar 

  • Osada, H., Y. Tatematsu, H. Saito, Y. Yatabe, T. Mitsudomi, and T. Takahashi. 2004. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. International Journal of Cancer 112: 26–32.

    CAS  Google Scholar 

  • Otterson, G.A., L. Hodgson, H. Pang, E.E. Vokes, and Cancer and Leukemia Group B. 2010. Phase II study of the histone deacetylase inhibitor Romidepsin in relapsed small cell lung cancer (Cancer and Leukemia Group B 30304). Journal of Thoracic Oncology 5: 1644–1648.

    PubMed Central  PubMed  Google Scholar 

  • Ouaïssi, M., I. Sielezneff, R. Silvestre, B. Sastre, J.P. Bernard, J.S. Lafontaine, M.J. Payan, L. Dahan, N. Pirrò, J.F. Seitz, E. Mas, D. Lombardo, and A. Ouaissi. 2008. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Annals of Surgical Oncology 15: 2318–2328.

    PubMed  Google Scholar 

  • Ozawa, Y., M. Towatari, S. Tsuzuki, F. Hayakawa, T. Maeda, Y. Miyata, M. Tanimoto, and H. Saito. 2001. Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood 98: 2116–2123.

    CAS  PubMed  Google Scholar 

  • Park, S.Y., J.A. Jun, K.J. Jeong, H.J. Heo, J.S. Sohn, H.Y. Lee, C.G. Park, and J. Kang. 2011. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncology Reports 25: 1677–1681.

    CAS  PubMed  Google Scholar 

  • Peart, M.J., G.K. Smyth, R.K. van Laar, D.D. Bowtell, V.M. Richon, P.A. Marks, A.J. Holloway, and R.W. Johnstone. 2005. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of USA 102: 3697–3702.

    CAS  Google Scholar 

  • Pérez-Perarnau, A., L. Coll-Mulet, C. Rubio-Patiño, D. Iglesias-Serret, A.M. Cosialls, D.M. González-Gironès, M. de Frias, A.F. de Sevilla, E. de la Banda, G. Pons, and J. Gil. 2011. Analysis of apoptosis regulatory genes altered by histone deacetylase inhibitors in chronic lymphocytic leukemia cells. Epigenetics 6: 1228–1235.

    PubMed  Google Scholar 

  • Piekarz, R.L., A.R. Frye, J.J. Wright, S.M. Steinberg, D.J. Liewehr, D.R. Rosing, V. Sachdev, T. Fojo, and S.E. Bates. 2006. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clinical Cancer Research 12: 3762–3773.

    CAS  PubMed  Google Scholar 

  • Piekarz, R.L., R. Frye, M. Turner, J.J. Wright, S.L. Allen, M.H. Kirschbaum, J. Zain, H.M. Prince, J.P. Leonard, L.J. Geskin, C. Reeder, D. Joske, W.D. Figg, E.R. Gardner, S.M. Steinberg, E.S. Jaffe, M. Stetler-Stevenson, S. Lade, A.T. Fojo, and S.E. Bates. 2009. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. Journal of Clinical Oncology 27: 5410–5417.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian, D.Z., S.K. Kachhap, S.J. Collis, H.M. Verheul, M.A. Carducci, P. Atadja, and R. Pili. 2006. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Research 66: 8814–8821.

    CAS  PubMed  Google Scholar 

  • Qiu, L., A. Burgess, D.P. Fairlie, H. Leonard, P.G. Parsons, and B.G. Gabrielli. 2000. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Molecular Biology of the Cell 11: 2069–2083.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quint, K., A. Agaimy, P. Di Fazio, R. Montalbano, C. Steindorf, R. Jung, C. Hellerbrand, A. Hartmann, H. Sitter, D. Neureiter, and M. Ocker. 2011. Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC. Virchows Archives 459: 129–139.

    CAS  Google Scholar 

  • Ramalingam, S.S., C.P. Belani, C. Ruel, P. Frankel, B. Gitlitz, M. Koczywas, I. Espinoza-Delgado, and D. Gandara. 2009. Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma. Journal of Thoracic Oncology 4: 97–101.

    PubMed Central  PubMed  Google Scholar 

  • Richon, V.M., Y. Webb, R. Merger, T. Sheppard, B. Jursic, L. Ngo, F. Civoli, R. Breslow, R.A. Rifkind, and P.A. Marks. 1996. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proceedings of the National Academy of Sciences of USA 93: 5705–5708.

    CAS  Google Scholar 

  • Richon, V.M., T.W. Sandhoff, R.A. Rifkind, and P.A. Marks. 2000. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proceedings of the National Academy of Sciences of USA 97: 10014–10019.

    CAS  Google Scholar 

  • Ropero, S., and M. Esteller. 2007. The role of histone deacetylases (HDACs) in human cancer. Molecular Oncology 1: 19–25.

    CAS  PubMed  Google Scholar 

  • Ropero, S., M.F. Fraga, E. Ballestar, R. Hamelin, H. Yamamoto, M. Boix-Chornet, R. Caballero, M. Alaminos, F. Setien, M.F. Paz, M. Herranz, J. Palacios, D. Arango, T.F. Orntoft, L.A. Aaltonen, S. Schwartz Jr., and M. Esteller. 2006. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nature Genetics 38: 566–569.

    CAS  PubMed  Google Scholar 

  • Rosato, R.R., and S. Grant. 2005. Histone deacetylase inhibitors: Insights into mechanisms of lethality. Expert Opinion on Therapeutic Targets 9: 809–924.

    CAS  PubMed  Google Scholar 

  • Ruefli, A.A., M.J. Ausserlechner, D. Bernhard, V.R. Sutton, K.M. Tainton, R. Kofler, M.J. Smyth, and R.W. Johnstone. 2001. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proceedings of the National Academy of Sciences of USA 98: 10833–10838.

    CAS  Google Scholar 

  • Sandor, V., A. Senderowicz, S. Mertins, D. Sackett, E. Sausville, M.V. Blagosklonny, and S.E. Bates. 2000. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. British Journal of Cancer 83: 817–825.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawa, H., H. Murakami, Y. Ohshima, T. Sugino, T. Nakajyo, T. Kisanuki, Y. Tamura, A. Satone, W. Ide, I. Hashimoto, and H. Kamada. 2001. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the Bcl-2-related protein Bad. Brain Tumor Pathology 18: 109–114.

    CAS  PubMed  Google Scholar 

  • Seo, S.Y. 2012. Multi-targeted hybrids based on HDAC inhibitors for anti-cancer drug discovery. Archives of Pharmacal Research 35: 197–200.

    CAS  PubMed  Google Scholar 

  • Serrador, J.M., J.R. Cabrero, D. Sancho, M. Mittelbrunn, A. Urzainqui, and F. Sánchez-Madrid. 2004. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20: 417–428.

    CAS  PubMed  Google Scholar 

  • Shah, M.H., P. Binkley, K. Chan, J. Xiao, D. Arbogast, M. Collamore, Y. Farra, D. Young, and M. Grever. 2006. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clinical Cancer Research 12: 3997–4003.

    CAS  PubMed  Google Scholar 

  • Song, J., J.H. Noh, J.H. Lee, J.W. Eun, Y.M. Ahn, S.Y. Kim, S.H. Lee, W.S. Park, N.J. Yoo, J.Y. Lee, and S.W. Nam. 2005. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113: 264–268.

    CAS  PubMed  Google Scholar 

  • Stadler, W.M., K. Margolin, S. Ferber, W. McCulloch, and J.A. Thompson. 2006. A phase II study of depsipeptide in refractory metastatic renal cell cancer. Clinical Genitourinary Cancer 5: 57–60.

    CAS  PubMed  Google Scholar 

  • Steele, N.L., J.A. Plumb, L. Vidal, J. Tjørnelund, P. Knoblauch, A. Rasmussen, C.E. Ooi, P. Buhl-Jensen, R. Brown, T.R. Evans, and J.S. DeBono. 2008. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clinical Cancer Research 14: 804–810.

    CAS  PubMed  Google Scholar 

  • Straus, S.M., J.A. Kors, M.L. De Bruin, C.S. van der Hooft, A. Hofman, J. Heeringa, J.W. Deckers, J.H. Kingma, M.C. Sturkenboom, B.H. Stricker, and J.C. Witteman. 2006. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. Journal of the American College of Cardiology 47: 362–367.

    PubMed  Google Scholar 

  • Strevel, E.L., D.J. Ing, and L.L. Siu. 2007. Molecularly targeted oncology therapeutics and prolongation of the QT interval. Journal of Clinical Oncology 25: 3362–3371.

    CAS  PubMed  Google Scholar 

  • Stypula-Cyrus, Y., D. Damania, D.P. Kunte, M.D. Cruz, H. Subramanian, H.K. Roy, and V. Backman. 2013. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure. PLoS ONE 8: e64600.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutheesophon, K., N. Nishimura, Y. Kobayashi, Y. Furukawa, M. Kawano, K. Itoh, Y. Kano, H. Ishii, and Y. Furukawa. 2005. Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228). Journal of Cellular Physiology 203: 387–397.

    CAS  PubMed  Google Scholar 

  • Traynor, A.M., S. Dubey, J.C. Eickhoff, J.M. Kolesar, K. Schell, M.S. Huie, D.L. Groteluschen, S.M. Marcotte, C.M. Hallahan, H.R. Weeks, G. Wilding, I. Espinoza-Delgado, and J.H. Schiller. 2009. Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: A Wisconsin Oncology Network phase II study. Journal of Thoracic Oncology 4: 522–526.

    PubMed Central  PubMed  Google Scholar 

  • Ungerstedt, J.S., Y. Sowa, W.S. Xu, Y. Shao, M. Dokmanovic, G. Perez, L. Ngo, A. Holmgren, X. Jiang, and P.A. Marks. 2005. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of USA 102: 673–678.

    CAS  Google Scholar 

  • U.S. Food and Drug Administration. Drugs. Belinostat. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm403960.htm. Accessed 21 Nov 2014.

  • U.S. Food and Drug Administration. Drugs. Romidepsin. http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm189466.htm. Accessed 21 Nov 2014.

  • Vansteenkiste, J., E. Van Cutsem, H. Dumez, C. Chen, J.L. Ricker, S.S. Randolph, and P. Schöffski. 2008. Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investigational New Drugs 26: 483–488.

    CAS  PubMed  Google Scholar 

  • Verdin, E., F. Dequiedt, and H.G. Kasler. 2003. Class II histone deacetylases: Versatile regulators. Trends in Genetics 19: 286–293.

    CAS  PubMed  Google Scholar 

  • Wang, J.C., M.I. Kafeel, B. Avezbakiyev, C. Chen, Y. Sun, C. Rathnasabapathy, M. Kalavar, Z. He, J. Burton, and S. Lichter. 2011. Histone deacetylase in chronic lymphocytic leukemia. Oncology 81: 325–329.

    CAS  PubMed  Google Scholar 

  • Watamoto, K., M. Towatari, Y. Ozawa, Y. Miyata, M. Okamoto, A. Abe, T. Naoe, and H. Saito. 2003. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22: 9176–9184.

    CAS  PubMed  Google Scholar 

  • Weichert, W., A. Röske, V. Gekeler, T. Beckers, M.P. Ebert, M. Pross, M. Dietel, C. Denkert, and C. Röcken. 2008a. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: A retrospective analysis. Lancet Oncology 9: 139–148.

    CAS  Google Scholar 

  • Weichert, W., A. Roske, S. Niesporek, A. Noske, A.C. Buckendahl, M. Dietel, V. Gekeler, M. Boehm, T. Beckers, and C. Denkert. 2008b. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: Specific role of class I histone deacetylases in vitro and in vivo. Clinical Cancer Research 14: 1669–1677.

    CAS  PubMed  Google Scholar 

  • Weichert, W., A. Röske, V. Gekeler, T. Beckers, C. Stephan, K. Jung, F.R. Fritzsche, S. Niesporek, C. Denkert, M. Dietel, and G. Kristiansen. 2008c. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. British Journal of Cancer 98: 604–610.

  • Whitehead, R.P., C. Rankin, P.M. Hoff, P.J. Gold, K.G. Billingsley, R.A. Chapman, L. Wong, J.H. Ward, J.L. Abbruzzese, and C.D. Blanke. 2009. Phase II trial of romidepsin (NSC-630176) in previously treated colorectal cancer patients with advanced disease: A Southwest Oncology Group study (S0336). Investigational New Drugs 27: 469–475.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whittaker, S.J., M.F. Demierre, E.J. Kim, A.H. Rook, A. Lerner, M. Duvic, J. Scarisbrick, S. Reddy, T. Robak, J.C. Becker, A. Samtsov, W. McCulloch, and Y.H. Kim. 2010. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. Journal of Clinical Oncology 28: 4485–4491.

    CAS  PubMed  Google Scholar 

  • Wolbrette, D. 2004. Drugs that cause torsades de pointes and increase the risk of sudden cardiac death. Current Cardiology Reports 6: 379–384.

    PubMed  Google Scholar 

  • Xie, H.J., J.H. Noh, J.K. Kim, K.H. Jung, J.W. Eun, H.J. Bae, M.G. Kim, Y.G. Chang, J.Y. Lee, H. Park, and S.W. Nam. 2012. HDAC1 inactivation induces mitotic defect and caspase independent autophagic cell death in liver cancer. PLoS ONE 7: e34265.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, W.M., Y.L. Yao, J.M. Sun, J.R. Davie, and E. Seto. 1997. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. Journal of Biological Chemistry 272: 28001–28007.

  • Yamashita, Y., M. Shimada, N. Harimoto, T. Rikimaru, K. Shirabe, S. Tanaka, and K. Sugimachi. 2003. Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. International Journal of Cancer 103: 572–576.

    CAS  Google Scholar 

  • Younes, A., Y. Oki, R.G. Bociek, J. Kuruvilla, M. Fanale, S. Neelapu, A. Copeland, H. Zhou, S. Jiang, J. Chen, and S.B. Su. 2014. Suberoylanilide hydroxamic acid suppresses inflammation-induced neovascularization. Canadian Journal of Physiology and Pharmacology 92: 879–885.

    Google Scholar 

  • Yuan, Z.L., Y.J. Guan, D. Chatterjee, and Y.E. Chin. 2005. STAT3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307: 269–273.

    CAS  PubMed  Google Scholar 

  • Zgouras, D., A. Wächtershäuser, D. Frings, and J. Stein. 2003. Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochemical and Biophysical Research Communications 300(4): 832–838.

    CAS  PubMed  Google Scholar 

  • Zhang, X.D., S.K. Gillespie, J.M. Borrow, and P. Hersey. 2004. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Molecular Cancer Therapeutics 3: 425–435.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., M. Adachi, R. Kawamura, and K. Imai. 2006. Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell Death and Differentiation 13: 129–140.

    CAS  PubMed  Google Scholar 

  • Zhao, Y., J. Tan, L. Zhuang, X. Jiang, E.T. Liu, and Q. Yu. 2005. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proceedings of the National Academy of Sciences of USA 102: 16090–16095.

    CAS  Google Scholar 

  • Zheng, G., and Y.C. Yang. 2005. Sumoylation and acetylation play opposite roles in the transactivation of PLAG1 and PLAGL2. Journal of Biological Chemistry 280: 40773–40781.

    CAS  PubMed  Google Scholar 

  • Zhou, H., S. Jiang, J. Chen, and S.B. Su. 2014. Suberoylanilide hydroxamic acid suppresses inflammation-induced neovascularization. Canadian Journal of Physiology and Pharmacology 92: 879–885.

Download references

Acknowledgments

This work was supported by the 2013 Inje University research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pusoon Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, P. Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch. Pharm. Res. 38, 933–949 (2015). https://doi.org/10.1007/s12272-015-0571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0571-1

Keywords

Navigation