Skip to main content

New Drug Discovery and Development in India to Counter Malaria

  • Chapter
  • First Online:
Drug Discovery and Drug Development
  • 638 Accesses

Abstract

As India sets its sight on malaria elimination, using tools for vector control, protection, diagnosis, and treatment, it is important to look at the progress made in efforts for new drug discovery in the country. This chapter focuses on antimalarial drug discovery and development efforts for new chemical entities, natural products, and formulations, and the current research scenario for exploring new biological targets in the parasite. It also identifies certain gaps and recommends future measures for strengthening research on antimalarial drugs in India.

This is CDRI communication no. 10130.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A-Elbasit IE, Elbashir MI, Khalil IF, Alifrangis M, Giha HA (2006) The efficacy of sulfadoxine-pyrimethamine alone and in combination with chloroquine for malaria treatment in rural Eastern Sudan: the interrelation between resistance, age and gametocytogenesis. Tropical Med Int Health 11:604–612

    Article  CAS  Google Scholar 

  • Alker AP, Kazadi WM, Kutelemeni AK, Bloland PB, Tshefu AK, Meshnick SR (2008) dhfr and dhps genotype and sulfadoxine-pyrimethamine treatment failure in children with falciparum malaria in the Democratic Republic of Congo. Tropical Med Int Health 13:1384–1391

    Article  CAS  Google Scholar 

  • Al-Nihmi FM, Kolli SK, Reddy SR, Mastan BS, Togiri J, Maruthi M, Gupta R, Sijwali PS, Mishra S, Kumar KA (2017) A novel and conserved Plasmodium sporozoite membrane protein SPELD is required for maturation of exo-erythrocytic forms. Sci Rep 7:40407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anas M, Sharma R, Dhamodharan V, Pradeepkumar PI, Manhas A, Srivastava K, Ahmed S, Kumar N (2017) Investigating pharmacological targeting of G-quadruplexes in the human malaria parasite. Biochemistry 56:6691–6699

    Article  CAS  PubMed  Google Scholar 

  • Asthana OP, Srivastava JS, Kamboj VP, Valecha N, Sharma VP, Gupta S, Pande TK, Vishwanathan KA, Mahapatra KM, Nayak NC et al (2001) A multicentric study with arteether in patients of uncomplicated falciparum malaria. J Assoc Physicians India 49:692–696

    CAS  PubMed  Google Scholar 

  • Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22

    Article  PubMed  Google Scholar 

  • Bajpai R, Dutta GP, Vishwakarma RA (1989) Blood schizontocidal activity of a new antimalarial drug, arteether (alpha/beta), against Plasmodium knowlesi in rhesus monkeys. Trans R Soc Trop Med Hyg 83:484

    Article  CAS  PubMed  Google Scholar 

  • Banerjee T, Kapoor N, Surolia N, Surolia A (2011) Benzothiophene carboxamide derivatives as novel antimalarials. IUBMB Life 63:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Baragana B, Forte B, Choi R, Nakazawa HS, Bueren-Calabuig JA, Pisco JP, Peet C, Dranow DM, Robinson DA, Jansen C et al (2019) Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proc Natl Acad Sci U S A 116:7015–7020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batra S, Sabnis YA, Rosenthal PJ, Avery MA (2003) Structure-based approach to falcipain-2 inhibitors: synthesis and biological evaluation of 1,6,7-trisubstituted dihydroisoquinolines and isoquinolines. Bioorg Med Chem 11:2293–2299

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner F, Jourdan J, Scheurer C, Blasco B, Campo B, Maser P, Wittlin S (2017) In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar J 16:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bedi RK, Patel C, Mishra V, Xiao H, Yada RY, Bhaumik P (2016) Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors. Sci Rep 6:31420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behl A, Kumar V, Bisht A, Panda JJ, Hora R, Mishra PC (2019) Cholesterol bound Plasmodium falciparum co-chaperone ‘PFA0660w’ complexes with major virulence factor ‘PfEMP1’ via chaperone ‘PfHsp70-x’. Sci Rep 9:2664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhandari S, Bhandari V, Sood J, Jaswal S, Rana V, Bedi N, Sehgal R, Tiwary AK (2017) Improved pharmacokinetic and pharmacodynamic attributes of artemether-lumefantrine-loaded solid SMEDDS for oral administration. J Pharm Pharmacol 69:1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Bhartiya D, Chandramouli B, Kumar N (2015) Co-evolutionary analysis implies auxiliary functions of HSP110 in Plasmodium falciparum. Proteins 83:1513–1525

    Article  CAS  PubMed  Google Scholar 

  • Bhartiya D, Chawla V, Ghosh S, Shankar R, Kumar N (2016) Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum. Genomics 108:224–231

    Article  CAS  PubMed  Google Scholar 

  • Chakka SK, Kalamuddin M, Sundararaman S, Wei L, Mundra S, Mahesh R, Malhotra P, Mohmmed A, Kotra LP (2015) Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorg Med Chem 23:2221–2240

    Article  CAS  PubMed  Google Scholar 

  • Charan M, Singh N, Kumar B, Srivastava K, Siddiqi MI, Habib S (2014) Sulfur mobilization for Fe-S cluster assembly by the essential SUF pathway in the Plasmodium falciparum apicoplast and its inhibition. Antimicrob Agents Chemother 58:3389–3398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charan M, Choudhary HH, Singh N, Sadik M, Siddiqi MI, Mishra S, Habib S (2017) [Fe-S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite. FEBS J 284:2629–2648

    Article  CAS  PubMed  Google Scholar 

  • Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, Chiu FC, Chollet J, Craft JC, Creek DJ et al (2011) Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci U S A 108:4400–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan SS, Sharma M, Chauhan PM (2010) Trioxaquines: hybrid molecules for the treatment of malaria. Drug News Perspect 23:632–646

    Article  CAS  PubMed  Google Scholar 

  • Chong CR, Chen X, Shi L, Liu JO, Sullivan DJ Jr (2006) A clinical drug library screen identifies astemizole as an antimalarial agent. Nat Chem Biol 2:415–416

    Article  CAS  PubMed  Google Scholar 

  • Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P (2013) Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci U S A 110:5392–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dana S, Prusty D, Dhayal D, Gupta MK, Dar A, Sen S, Mukhopadhyay P, Adak T, Dhar SK (2014) Potent antimalarial activity of acriflavine in vitro and in vivo. ACS Chem Biol 9:2366–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar MA, Sharma A, Mondal N, Dhar SK (2007) Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit. Eukaryot Cell 6:398–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darade A, Pathak S, Sharma S, Patravale V (2018) Atovaquone oral bioavailability enhancement using electrospraying technology. Eur J Pharm Sci 111:195–204

    Article  CAS  PubMed  Google Scholar 

  • Das P, Babbar P, Malhotra N, Sharma M, Jachak GR, Gonnade RG, Shanmugam D, Harlos K, Yogavel M, Sharma A et al (2018) Specific stereoisomeric conformations determine the drug potency of cladosporin scaffold against malarial parasite. J Med Chem 61:5664–5678

    Article  CAS  PubMed  Google Scholar 

  • Dawre S, Pathak S, Sharma S, Devarajan PV (2018) Enhanced antimalalarial activity of a prolonged release in situ gel of arteether-lumefantrine in a murine model. Eur J Pharm Biopharm 123:95–107

    Article  CAS  PubMed  Google Scholar 

  • Dell’Agli M, Galli GV, Corbett Y, Taramelli D, Lucantoni L, Habluetzel A, Maschi O, Caruso D, Giavarini F, Romeo S et al (2009) Antiplasmodial activity of Punica granatum L. fruit rind. J Ethnopharmacol 125:279–285

    Article  PubMed  Google Scholar 

  • Dende C, Meena J, Nagarajan P, Nagaraj VA, Panda AK, Padmanaban G (2017) Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria. Sci Rep 7:10062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennis ASM, Lehane AM, Ridgway MC, Holleran JP, Kirk K (2018) Cell swelling induced by the antimalarial KAE609 (Cipargamin) and other PfATP4-associated antimalarials. Antimicrob Agents Chemother 62:e00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbyshire ER, Prudencio M, Mota MM, Clardy J (2012) Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc Natl Acad Sci U S A 109:8511–8516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh AS, Srivastava S, Herrmann S, Gupta A, Mitra P, Gilberger TW, Dhar SK (2012) The role of N-terminus of Plasmodium falciparum ORC1 in telomeric localization and var gene silencing. Nucleic Acids Res 40:5313–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deu E (2017) Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 284:2604–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dev N (2019) An infection cocktail: malaria, dengue, chikungunya and Japanese encephalitis. Trop Dr 49:42–43

    Google Scholar 

  • Dutta G, Bajpai R, Vishwakarma R (1989a) Antimalarial efficacy of arteether against multiple drug resistant strain of Plasmodium yoelii nigeriensis. Pharmacol Res 21:415–419

    Article  CAS  PubMed  Google Scholar 

  • Dutta G, Bajpai R, Vishwakarma R (1989b) Comparison of antimalarial efficacy of artemisinin (qinghaosu) and arteether against Plasmodium cynomolgi B infection in monkeys. Trans R Soc Trop Med Hyg 83:56–57

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi P, Khatik R, Khandelwal K, Srivastava R, Taneja I, Raju KSR, Dwivedi H, Shukla P, Gupta P, Singh S (2014) Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of arteether: pharmacokinetics, toxicity and antimalarial activity in mice. RSC Adv 4:64905–64918

    Article  CAS  Google Scholar 

  • Dwivedi P, Khatik R, Chaturvedi P, Khandelwal K, Taneja I, Raju KS, Dwivedi H, Singh SK, Gupta PK, Shukla P et al (2015) Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: an approach by enhanced bioavailability. Coll Surf B Biointerf 126:467–475

    Article  CAS  Google Scholar 

  • El Bakkouri M, Pow A, Mulichak A, Cheung KL, Artz JD, Amani M, Fell S, de Koning-Ward TF, Goodman CD, McFadden GI (2010) The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J Mol Biol 404:456–477

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo L, Scherf A (2005) Plasmodium telomeres and telomerase: the usual actors in an unusual scenario. Chromosom Res 13:517–524

    Google Scholar 

  • Figueiredo LM, Rocha EP, Mancio-Silva L, Prevost C, Hernandez-Verdun D, Scherf A (2005) The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus. Nucleic Acids Res 33:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong KY, Wright DW (2013) Hemozoin and antimalarial drug discovery. Future Med Chem 5:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Gisselberg JE, Dellibovi-Ragheb TA, Matthews KA, Bosch G, Prigge ST (2013) The SUF iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites. PLoS Pathog 9:e1003655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg DE, Sigala PA (2017) Plasmodium heme biosynthesis: to be or not to be essential? PLoS Pathog 13:e1006511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodman CD, Pasaje CFA, Kennedy K, McFadden GI, Ralph SA (2016) Targeting protein translation in organelles of the Apicomplexa. Trends Parasitol 32:953–965

    Article  CAS  PubMed  Google Scholar 

  • Goyal M, Alam A, Iqbal MS, Dey S, Bindu S, Pal C, Banerjee A, Chakrabarti S, Bandyopadhyay U (2012) Identification and molecular characterization of an Alba-family protein from human malaria parasite Plasmodium falciparum. Nucleic Acids Res 40:1174–1190

    Article  CAS  PubMed  Google Scholar 

  • Goyal M, Banerjee C, Nag S, Bandyopadhyay U (2016) The Alba protein family: structure and function. Biochim Biophys Acta 1864:570–583

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Mehra P, Dhar SK (2008) Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol 69:646–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Mehrotra S, Sharma A, Chugh M, Pandey R, Kaushik A, Khurana S, Srivastava N, Srivastava T, Deshmukh A et al (2017) Exploring heme and hemoglobin binding regions of Plasmodium Heme Detoxification Protein for new antimalarial discovery. J Med Chem 60:8298–8308

    Article  CAS  PubMed  Google Scholar 

  • Habib S, Vaishya S, Gupta K (2016) Translation in organelles of Apicomplexan parasites. Trends Parasitol 32:939–952

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Yogavel M, Sharma A (2015) Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases. Antimicrob Agents Chemother 59:1856–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imwong M, Hien TT, Thuy-Nhien NT, Dondorp AM, White NJ (2017a) Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis 17:1022–1023

    Article  PubMed  Google Scholar 

  • Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, Smithuis FM, Hlaing TM, Tun KM, van der Pluijm RW (2017b) The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis 17:491–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaijyan DK, Verma PK, Singh AP (2016) A novel FIKK kinase regulates the development of mosquito and liver stages of the malaria. Sci Rep 6:39285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Rathore S, Asad M, Hossain ME, Sinha D, Datta G, Mohmmed A (2013) The prokaryotic ClpQ protease plays a key role in growth and development of mitochondria in Plasmodium falciparum. Cell Microbiol 15:1660–1673

    CAS  PubMed  Google Scholar 

  • Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi MA, Sharma A (2015) Structure of Prolyl-tRNA Synthetase-Halofuginone complex provides basis for development of drugs against malaria and toxoplasmosis. Structure 23:819–829

    Article  CAS  PubMed  Google Scholar 

  • Jain JP, Leong FJ, Chen L, Kalluri S, Koradia V, Stein DS, Wolf M-C, Sunkara G, Kota J (2017) Bioavailability of lumefantrine is significantly enhanced with a novel formulation approach, an outcome from a randomized, open-label pharmacokinetic study in healthy volunteers. Antimicrob Agents Chemother 61:e00868–e00817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantamreddi VS, Parida S, Kommula SM, Wright CW (2009) Phytotherapy used in Orissa state, India for treating malaria. Phytother Res 23:1638–1641

    Article  PubMed  Google Scholar 

  • Kanyal A, Rawat M, Gurung P, Choubey D, Anamika K, Karmodiya K (2018) Genome-wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of Plasmodium falciparum. FEBS J 285:1767–1782

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Gopalakrishnapai J, Surolia N, Surolia A (2004) Mutational analysis of the triclosan-binding region of enoyl-ACP (acyl-carrier protein) reductase from Plasmodium falciparum. Biochem J 381:735–741

    Google Scholar 

  • Kapoor N, Banerjee T, Babu P, Maity K, Surolia N, Surolia A (2009) Design, development, synthesis, and docking analysis of 2′-substituted triclosan analogs as inhibitors for Plasmodium falciparum Enoyl-ACP reductase. IUBMB Life 61:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Karnik S, Tathed P, Antarkar D, Gidse C, Vaidya R, Vaidya A (2008) Antimalarial activity and clinical safety of traditionally used Nyctanthes arbor-tristis Linn. Indian J Tradit Knowl 7:330–334

    Google Scholar 

  • Ke H, Sigala PA, Miura K, Morrisey JM, Mather MW, Crowley JR, Henderson JP, Goldberg DE, Long CA, Vaidya AB (2014) The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J Biol Chem 289:34827–34837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan S, Sharma A, Jamwal A, Sharma V, Pole AK, Thakur KK, Sharma A (2011) Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum. Sci Rep 1:188

    Google Scholar 

  • Khan S, Garg A, Camacho N, Van Rooyen J, Kumar PA, Belrhali H, Ribas de Pouplana L, Sharma V, Sharma A (2013a) Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development. Acta Crystallogr D Biol Crystallogr 69:785–795

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Leger A, Ribas de Pouplana L, Yogavel M, Sharma A (2013b) An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. PLoS One 8:e66224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Sharma A, Belrhali H, Yogavel M, Sharma A (2014) Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. J Struct Funct Genom 15:63–71

    Article  CAS  Google Scholar 

  • Koreny L, Obornik M, Lukes J (2013) Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog 9:e1003088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krudsood S, Wilairatana P, Tangpukdee N, Chalermrut K, Srivilairit S, Thanachartwet V, Muangnoicharoen S, Luplertlop N, Brittenham GM, Looareesuwan S (2006) Safety and tolerability of elubaquine (bulaquine, CDRI 80/53) for treatment of Plasmodium vivax malaria in Thailand. Korean J Parasitol 44:221–228

    Google Scholar 

  • Kulzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER, Blatch GL, Crabb BS, Gilson PR, Przyborski JM (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14:1784–1795

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Tanveer A, Biswas S, Ram EV, Gupta A, Kumar B, Habib S (2010) Nuclear-encoded DnaJ homologue of Plasmodium falciparum interacts with replication ori of the apicoplast genome. Mol Microbiol 75:942–956

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Chaubey S, Shah P, Tanveer A, Charan M, Siddiqi MI, Habib S (2011) Interaction between sulphur mobilisation proteins SufB and SufC: evidence for an iron-sulphur cluster biogenesis pathway in the apicoplast of Plasmodium falciparum. Int J Parasitol 41:991–999

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Moirangthem R, Gahlawat SK, Chandra J, Gupta P, Valecha N, Anvikar A, Singh V (2015) Emergence of sulfadoxine-pyrimethamine resistance in Indian isolates of Plasmodium falciparum in the last two decades. Infect Genet Evol 36:190–198

    Google Scholar 

  • Kumari P, Sahal D, Jain SK, Chauhan VS (2012) Bioactivity guided fractionation of leaves extract of Nyctanthes arbor tristis (Harshringar) against P. falciparum. PLoS One 7:e51714

    Google Scholar 

  • Lacerda MV, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, Yilma D, Batista PD, Espino FE, Mia RZ (2019) Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med 380:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lekana-Douki JB, Bhattacharya D, Zatra R, Toure-Ndouo FS (2012) Indian anti-malaria OMARIA is effective against African drug resistant P. falciparum field isolates and laboratory strains; without toxicity. Int J Clin Med 3:1

    Article  Google Scholar 

  • Leong FJ, Li R, Jain JP, Lefevre G, Magnusson B, Diagana TT, Pertel P (2014) A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel antimalarial Spiroindolone KAE609 (Cipargamin) to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother 58:6209–6214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manickam Y, Chaturvedi R, Babbar P, Malhotra N, Jain V, Sharma A (2018) Drug targeting of one or more aminoacyl-tRNA synthetase in the malaria parasite Plasmodium falciparum. Drug Discov Today 23:1233–1240

    Google Scholar 

  • Mastan BS, Narwal SK, Dey S, Kumar KA, Mishra S (2017) Plasmodium bergheiplasmepsin VIII is essential for sporozoite gliding motility. Int J Parasitol 47:239–245

    Google Scholar 

  • McCarthy JS, Sekuloski S, Griffin PM, Elliott S, Douglas N, Peatey C, Rockett R, O’Rourke P, Marquart L, Hermsen C et al (2011) A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS One 6:e21914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy JS, Marquart L, Sekuloski S, Trenholme K, Elliott S, Griffin P, Rockett R, O’Rourke P, Sloots T, Angulo-Barturen I et al (2016a) Linking murine and human Plasmodium falciparum challenge models in a translational path for antimalarial drug development. Antimicrob Agents Chemother 60:3669–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy JS, Ruckle T, Djeriou E, Cantalloube C, Ter-Minassian D, Baker M, O’Rourke P, Griffin P, Marquart L, Hooft van Huijsduijnen R et al (2016b) A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study. Malar J 15:469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra N, Lal J, Puri SK, Madhusudanan KP, Gupta RC (2007) In vitro and in vivo pharmacokinetic studies of bulaquine (analogue of primaquine), a novel antirelapse antimalarial, in rat, rabbit and monkey--highlighting species similarities and differences. Biopharm Drug Dispos 28:209–227

    Google Scholar 

  • Ménard D, Clain J, Ariey F (2018) Multidrug-resistant Plasmodium falciparum malaria in the greater Mekong subregion. Lancet Infect Dis 18:238–239

    Article  PubMed  Google Scholar 

  • Mendes AM, Albuquerque IS, Machado M, Pissarra J, Meireles P, Prudencio M (2017) Inhibition of Plasmodium liver infection by Ivermectin. Antimicrob Agents Chemother 61:e02005–e02016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Asthana O, Mohanty S, Patnaik J, Das B, Srivastava J, Satpathy S, Dash S, Rath P, Varghese K (1995) Effectiveness of α, β-arteether in acute falciparum malaria. Trans R Soc Trop Med Hyg 89:299–301

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Rathore I, Arekar A, Sthanam LK, Xiao H, Kiso Y, Sen S, Patankar S, Gustchina A, Hidaka K et al (2018) Deciphering the mechanism of potent peptidomimetic inhibitors targeting plasmepsins - biochemical and structural insights. FEBS J 285:3077–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra M, Singh V, Singh S (2019) Structural insights into key Plasmodium proteases as therapeutic drug targets. Front Microbiol 10:394

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra A (2017). https://thewire.in/science/arteether-malaria-cdri-csir-research-funding

  • Mohanty S, Mishra S, Satpathy S, Dash S, Patnaik J (1997) α, β-Arteether for the treatment of complicated falciparum malaria. Trans R Soc Trop Med Hyg 91:328–330

    Article  CAS  PubMed  Google Scholar 

  • Moura PA, Dame JB, Fidock DA (2009) Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors. Antimicrob Agents Chemother 53:4968–4978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukim A, Shukla M, Patel J, Patel H, Naik S, Pandyas N, Sanghani K (2011) A phase III clinical trial of alpha, beta-arteether injection 150 mg/ml in patients of P. falciparum malaria. J Indian Med Assoc 109:597–599

    Google Scholar 

  • Mundra S, Thakur V, Bello AM, Rathore S, Asad M, Wei L, Yang J, Chakka SK, Mahesh R, Malhotra P et al (2017) A novel class of Plasmodial ClpP protease inhibitors as potential antimalarial agents. Bioorg Med Chem 25:5662–5677

    Article  CAS  PubMed  Google Scholar 

  • Nagano S, Lin TY, Edula JR, Heddle JG (2014) Unique features of apicoplast DNA gyrases from Toxoplasma gondii and Plasmodium falciparum. BMC Bioinformatics 15:416

    Google Scholar 

  • Nagappa LK, Singh D, Dey S, Kumar KA, Balaram H (2019) Biochemical and physiological investigations on adenosine 5′ monophosphate deaminase from Plasmodium spp. Mol Microbiol 112:699. https://doi.org/10.1111/mmi.14313

  • Nagaraj VA, Padmanaban G (2017) Insights on heme synthesis in the malaria parasite. Trends Parasitol 33:583–586

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj VA, Sundaram B, Varadarajan NM, Subramani PA, Kalappa DM, Ghosh SK, Padmanaban G (2013) Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog 9:e1003522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandakumar DN, Nagaraj VA, Vathsala PG, Rangarajan P, Padmanaban G (2006) Curcumin-artemisinin combination therapy for malaria. Antimicrob Agents Chemother 50:1859–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, Fremont DH, Tolia N, Beck JR, Meyers MJ et al (2017) Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 358:518–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newby G, Bennett A, Larson E, Cotter C, Shretta R, Phillips AA, Feachem RG (2016) The path to eradication: a progress report on the malaria-eliminating countries. Lancet 387:1775–1784

    Article  PubMed  Google Scholar 

  • Njue M, Njuguna P, Kapulu MC, Sanga G, Bejon P, Marsh V, Molyneux S, Kamuya D (2018) Ethical considerations in Controlled Human Malaria Infection studies in low resource settings: experiences and perceptions of study participants in a malaria Challenge study in Kenya. Well Open Res 3:39

    Article  Google Scholar 

  • Nyunt MM, Hendrix CW, Bakshi RP, Kumar N, Shapiro TA (2009) Phase I/II evaluation of the prophylactic antimalarial activity of pafuramidine in healthy volunteers challenged with Plasmodium falciparum sporozoites. Am J Trop Med Hyg 80:528–535

    Article  CAS  PubMed  Google Scholar 

  • Panchal M, Rawat K, Kumar G, Kibria KM, Singh S, Kalamuddin M, Mohmmed A, Malhotra P, Tuteja R (2014) Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleo-cytoplasmic shuttling of SRP. Cell Death Dis 5:e994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda SK, Luyten W (2018) Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Parasite (Paris, France) 25:10

    Article  Google Scholar 

  • Pandey AV, Tekwani BL, Singh RL, Chauhan VS (1999) Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 274:19383–19388

    Article  CAS  PubMed  Google Scholar 

  • Pazhayam NM, Chhibber-Goel J, Sharma A (2019) New leads for drug repurposing against malaria. Drug Discov Today 24:263–271

    Article  CAS  PubMed  Google Scholar 

  • Pino P, Caldelari R, Mukherjee B, Vahokoski J, Klages N, Maco B, Collins CR, Blackman MJ, Kursula I, Heussler V et al (2017) A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science 358:522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu P, Suryavanshi S, Pathak S, Patra A, Sharma S, Patravale V (2016a) Nanostructured lipid carriers of artemether–lumefantrine combination for intravenous therapy of cerebral malaria. Int J Pharm 513:504–517

    Article  CAS  PubMed  Google Scholar 

  • Prabhu P, Suryavanshi S, Pathak S, Sharma S, Patravale V (2016b) Artemether lumefantrine nanostructured lipid carriers for oral malaria therapy: enhanced efficacy at reduced dose and dosing frequency. Int J Pharm 511:473–487

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Atul, Soni A, Puri SK, Sijwali PS (2012) Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. PLoS One 7:e51619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Atul, Kolla VK, Legac J, Singhal N, Navale R, Rosenthal PJ, Sijwali PS (2013) Blocking Plasmodium falciparum development via dual inhibition of hemoglobin degradation and the ubiquitin proteasome system by MG132. PLoS One 8:e73530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri SK, Dutta GP (2003) Blood schizontocidal activity of WR 238605 (Tafenoquine) against Plasmodium cynomolgi and Plasmodium fragile infections in rhesus monkeys. Acta Trop 86:35–40

    Article  CAS  PubMed  Google Scholar 

  • Puri SK, Dutta GP (2005) Plasmodium cynomolgi: gametocytocidal activity of the anti-malarial compound CDRI 80/53 (elubaquine) in rhesus monkeys. Exp Parasitol 111:8–13

    Article  CAS  PubMed  Google Scholar 

  • Raghu Ram EV, Kumar A, Biswas S, Kumar A, Chaubey S, Siddiqi MI, Habib S (2007) Nuclear gyrB encodes a functional subunit of the Plasmodium falciparum gyrase that is involved in apicoplast DNA replication. Mol Biochem Parasitol 154:30–39

    Article  CAS  PubMed  Google Scholar 

  • Raza M, Bharti H, Singal A, Nag A, Ghosh PC (2018) Long circulatory liposomal maduramicin inhibits the growth of Plasmodium falciparum blood stages in culture and cures murine models of experimental malaria. Nanoscale 10:13773–13791

    Article  CAS  PubMed  Google Scholar 

  • Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474

    Article  CAS  PubMed  Google Scholar 

  • Rizzi L, Sundararaman S, Cendic K, Vaiana N, Korde R, Sinha D, Mohmmed A, Malhotra P, Romeo S (2011) Design and synthesis of protein-protein interaction mimics as Plasmodium falciparum cysteine protease, falcipain-2 inhibitors. Eur J Med Chem 46:2083–2090

    Article  CAS  PubMed  Google Scholar 

  • Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J et al (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PS, Sahu M, Ambu S (2016) A review of concurrent infections of malaria and dengue in Asia. Asian Pac J Trop Biomed 6:633–638

    Article  Google Scholar 

  • Sato S, Clough B, Coates L, Wilson RJ (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155:117–125

    Article  CAS  PubMed  Google Scholar 

  • Schrader FC, Glinca S, Sattler JM, Dahse HM, Afanador GA, Prigge ST, Lanzer M, Mueller AK, Klebe G, Schlitzer M (2013) Novel type II fatty acid biosynthesis (FAS II) inhibitors as multistage antimalarial agents. ChemMedChem 8:442–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi H, Reddy DVS, Khan T, Ranjan R, Srivastava A, Vaishya S, Sharma T, Siddiqui MI, Habib S, Misra A (2017) Dehydroascorbate-derivatized chitosan particles for targeting antimalarial agents to infected erythrocytes. Int J Pharm 524:205–214

    Article  CAS  PubMed  Google Scholar 

  • Shafiq N, Rajagopalan S, Kushwaha HN, Mittal N, Chandurkar N, Bhalla A, Kaur S, Pandhi P, Puri GD, Achuthan S et al (2014) Single ascending dose safety and pharmacokinetics of CDRI-97/78: first-in-human study of a novel antimalarial drug. Mal Res Treat 2014:372521

    CAS  Google Scholar 

  • Shankar R, Deb S, Sharma BK (2012) Antimalarial plants of northeast India: an overview. J Ayurveda Integr Med 3:10–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Amarnath N, Shukla S, Ayana R, Kumar N, Yadav N, Kannan D, Sehrawat S, Pati S, Lochab B et al (2018) Benzoxazine derivatives of phytophenols show anti-plasmodial activity via sodium homeostasis disruption. Bioorg Med Chem Lett 28:1629–1637

    Article  CAS  PubMed  Google Scholar 

  • Shears MJ, Botte CY, McFadden GI (2015) Fatty acid metabolism in the Plasmodium apicoplast: drugs, doubts and knockouts. Mol Biochem Parasitol 199:34–50

    Article  CAS  PubMed  Google Scholar 

  • Simonsen HT, Nordskjold JB, Smitt UW, Nyman U, Palpu P, Joshi P, Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74:195–204

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Chaudhary S, Kanchan R, Puri SK (2007a) Conversion of antimalarial drug artemisinin to a new series of tricyclic 1,2,4-trioxanes1. Org Lett 9:4327–4329

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Kanchan R, Sharma U, Puri SK (2007b) New adamantane-based spiro 1,2,4-trioxanes orally effective against rodent and simian malaria. J Med Chem 50:521–527

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Surolia N, Surolia A (2009) Triclosan inhibit the growth of the late liver-stage of Plasmodium. IUBMB Life 61:923–928

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Agarwal D, Sharma K, Sharma M, Nielsen MA, Alifrangis M, Singh AK, Gupta RD, Awasthi SK (2016) 4-Aminoquinoline derivatives: synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites. Eur J Med Chem 122:394–407

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Rajendran V, He J, Singh AK, Achieng AO, Vandana, Pant A, Nasamu AS, Pandit M, Singh J et al (2019) Fast-acting small molecules targeting malarial Aspartyl Proteases, Plasmepsins, inhibit malaria infection at multiple life stages. ACS Infect Dis 5:184–198

    Google Scholar 

  • Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R, Se Y, Chann S, Ittiverakul M, Sia-ngam P et al (2015) Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis 15:683–691

    Article  CAS  PubMed  Google Scholar 

  • Stanisic DI, McCarthy JS, Good MF (2018) Controlled human malaria infection: applications, advances, and challenges. Infect Immun 86:e00479

    Article  CAS  PubMed  Google Scholar 

  • Subramanian G, Belekar MA, Shukla A, Tong JX, Sinha A, Chu TTT, Kulkarni AS, Preiser PR, Reddy DS, Tan KSW et al (2018) Targeted phenotypic screening in Plasmodium falciparum and Toxoplasma gondii reveals novel modes of action of Medicines for Malaria Venture Malaria Box molecules. mSphere 3:e00534

    Google Scholar 

  • Sulyok M, Ruckle T, Roth A, Murbeth RE, Chalon S, Kerr N, Samec SS, Gobeau N, Calle CL, Ibanez J et al (2017) DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect Dis 17:636–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surolia N, Padmanaban G (1992) de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 187:744–750

    Article  CAS  PubMed  Google Scholar 

  • Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 7:167–173

    Article  CAS  PubMed  Google Scholar 

  • Thanh NV, Thuy-Nhien N, Tuyen NT, Tong NT, Nha-Ca NT, Dong LT, Quang HH, Farrar J, Thwaites G, White NJ et al (2017) Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar J 16:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thriemer K, Hong NV, Rosanas-Urgell A, Phuc BQ, Ha DM, Pockele E, Guetens P, Van NV, Duong TT, Amambua-Ngwa A, D’Alessandro U, Erharta A (2014) Delayed parasite clearance after treatment with Dihydroartemisinin-Piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrob Agents Chemother 58:7049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toure OA, Valecha N, Tshefu AK, Thompson R, Krudsood S, Gaye O, Rao BHK, Sagara I, Bose TK, Mohanty S et al (2016) A phase 3, double-blind, randomized study of arterolane maleate-piperaquine phosphate vs artemether-lumefantrine for falciparum malaria in adolescent and adult patients in Asia and Africa. Clin Infect Dis 62:964–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi R, Dutta GP, Vishwakarma RA (1996) Gametocytocidal activity of alpha/beta arteether by the oral route of administration. Am J Trop Med Hyg 54:652–654

    Article  CAS  PubMed  Google Scholar 

  • Vale N, Moreira R, Gomes P (2009) Primaquine revisited six decades after its discovery. Eur J Med Chem 44:937–953

    Article  CAS  PubMed  Google Scholar 

  • Valecha N, Devi CU, Joshi H, Shahi V, Sharma V, Lal S (2000) Comparative efficacy of Ayush-64 vs chloroquine in vivax malaria. Curr Sci 78:1120–1122

    Google Scholar 

  • Valecha N, Adak T, Bagga A, Asthana O, Srivastava J, Joshi H, Sharma V (2001) Comparative antirelapse efficacy of CDRI compound 80/53 (Bulaquine) vs primaquine in double blind clinical trial. Curr Sci 80:561–563

    CAS  Google Scholar 

  • Valecha N, Looareesuwan S, Martensson A, Abdulla SM, Krudsood S, Tangpukdee N, Mohanty S, Mishra SK, Tyagi PK, Sharma SK et al (2010) Arterolane, a new synthetic trioxolane for treatment of uncomplicated Plasmodium falciparum malaria: a phase II, multicenter, randomized, dose-finding clinical trial. Clin Infect Dis 51:684–691

    Article  CAS  PubMed  Google Scholar 

  • Vathsala PG, Dende C, Nagaraj VA, Bhattacharya D, Das G, Rangarajan PN, Padmanaban G (2012) Curcumin-arteether combination therapy of Plasmodium berghei-infected mice prevents recrudescence through immunomodulation. PLoS One 7:e29442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FC, Chollet J, Dong Y, Dorn A, Hunziker D, Matile H et al (2004) Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430:900–904

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Pandey S, Agarwal P, Verma P, Deshpande S, Saxena JK, Srivastava K, Chauhan PM, Prabhakar YS (2016) N-(7-Chloroquinolinyl-4-aminoalkyl) arylsulfonamides as antimalarial agents: rationale for the activity with reference to inhibition of hemozoin formation. RSC Adv 6:25584–25593

    Article  CAS  Google Scholar 

  • Weissig V, Vetro-Widenhouse TS, Rowe TC (1997) Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol 16:1483–1492

    Article  CAS  PubMed  Google Scholar 

  • White NJ, Pukrittayakamee S, Phyo AP, Rueangweerayut R, Nosten F, Jittamala P, Jeeyapant A, Jain JP, Lefevre G, Li R et al (2014) Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med 371:403–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav N, Sharma C, Awasthi SK (2014) Diversification in the synthesis of antimalarial trioxane and tetraoxane analogs. RSC Adv 4:5469–5498

    Article  CAS  Google Scholar 

  • Yadav N, Agarwal D, Kumar S, Dixit AK, Gupta RD, Awasthi SK (2018) In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur J Med Chem 145:735–745

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Habib, S. (2021). New Drug Discovery and Development in India to Counter Malaria. In: Dikshit, M. (eds) Drug Discovery and Drug Development. Springer, Singapore. https://doi.org/10.1007/978-981-15-8002-4_4

Download citation

Publish with us

Policies and ethics