Skip to main content

Mycobiome Dysbiosis in Oral Lichen Planus

  • Chapter
  • First Online:
Atlas of Oral Microbiology: From Healthy Microflora to Disease

Abstract

The biodiversity of the mycobiome, an important component of the oral microbial community, and the roles of fungal-bacterial and fungal-immune system interactions in the pathogenesis of oral lichen planus (OLP) remain largely uncharacterized. In this study, we sequenced the salivary mycobiome and bacteriome (Wang et al Sci Rep 6:22943, 2016) associated with OLP. First, we described the dysbiosis of the microbiome in OLP patients, which exhibits lower levels of fungi and higher levels of bacteria. Significantly higher abundances of the fungi Candida and Aspergillus in patients with reticular OLP and of Alternaria and Sclerotiniaceae_unidentified in patients with erosive OLP were observed compared to the healthy controls. Aspergillus was identified as an “OLP-associated” fungus because of its detection at a higher frequency than in the healthy controls. Second, the co-occurrence patterns of the salivary mycobiome-bacteriome demonstrated negative associations between specific fungal and bacterial taxa identified in the healthy controls, which diminished in the reticular OLP group and even became positive in the erosive OLP group. Moreover, the oral cavities of OLP patients were colonized by dysbiotic oral flora with lower ecological network complexity and decreased fungal Firmicutes and increased fungal Bacteroidetes sub-networks. Third, several keystone fungal genera (Bovista, Erysiphe, Psathyrella, etc.) demonstrated significant correlations with clinical scores and IL-17 levels. Thus, we established that fungal dysbiosis is associated with the aggravation of OLP. Fungal dysbiosis could alter the salivary bacteriome or may reflect a direct effect of host immunity, which participates in OLP pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang K, et al. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Sci Rep. 2016;6:22943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baek K, Choi Y. The microbiology of oral lichen planus: is microbial infection the cause of oral lichen planus? Mol Oral Microbiol. 2018;33:22–8.

    Article  CAS  PubMed  Google Scholar 

  3. Aghbari SMH, et al. Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol. 2017;68:92–102.

    Article  CAS  PubMed  Google Scholar 

  4. Gupta S, Jawanda MK. Oral Lichen planus: an update on etiology, pathogenesis, clinical presentation, diagnosis and management. Indian J Dermatol. 2015;60:222–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choi YS, et al. The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci Rep. 2016;6:29186.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bombeccari GP, Gianni AB, Spadari F. Oral Candida colonization and oral lichen planus. Oral Dis. 2017;23:1009–10.

    Article  PubMed  Google Scholar 

  7. Gainza-Cirauqui ML, et al. Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders. J Oral Pathol Med. 2013;42:243–9.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng X, et al. Carriage rate and virulence attributes of oral Candida albicans isolates from patients with oral lichen planus: a study in an ethnic Chinese cohort. Mycoses. 2009;52:161–5.

    Article  PubMed  Google Scholar 

  9. Masaki M, Sato T, Sugawara Y, Sasano T, Takahashi N. Detection and identification of non-Candida albicans species in human oral lichen planus. Microbiol Immunol. 2011;55:66–70.

    Article  CAS  PubMed  Google Scholar 

  10. Ghannoum MA, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6:e1000713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dupuy AK, et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One. 2014;9:e90899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mukherjee PK, et al. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2015;12:77–87.

    Article  PubMed  Google Scholar 

  13. Harrison MJ, et al. Fungal microbiota in the adult cystic fibrosis (CF) airway: characterization by second-generation sequencing and correlation with standard culture-based methods and clinical phenotype. Ir J Med Sci. 2012;181:S369–437.

    Google Scholar 

  14. Xu H, Dongari-Bagtzoglou A. Shaping the oral mycobiota: interactions of opportunistic fungi with oral bacteria and the host. Curr Opin Microbiol. 2015;26:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang H, et al. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. J Oral Pathol Med. 2016;45:385–93.

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, et al. Immunoexpression of interleukin-22 and interleukin-23 in oral and cutaneous lichen planus lesions: a preliminary study. Mediat Inflamm. 2013;2013:801974.

    Google Scholar 

  17. Zelante T, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.

    Article  CAS  PubMed  Google Scholar 

  18. Hoarau G, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease. MBio. 2016;7:e01250-16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sam QH, Chang MW, Chai LY. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci. 2017;18:E330.

    Article  PubMed  CAS  Google Scholar 

  20. Rizzetto L, De Filippo C, Cavalieri D. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol. 2014;44:3166–81.

    Article  CAS  PubMed  Google Scholar 

  21. Bozena DK, Iwona D, Ilona K. The mycobiome – a friendly cross-talk between fungal colonizers and their host. Ann Parasitol. 2016;62:175–84.

    PubMed  Google Scholar 

  22. Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14:405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piboonniyom SO, Treister N, Pitiphat W, Woo SB. Scoring system for monitoring oral lichenoid lesions: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:696–703.

    Article  PubMed  Google Scholar 

  24. Alekseyenko AV, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1:31.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lynde CW, et al. The skin microbiome in atopic dermatitis and its relationship to emollients. J Cutan Med Surg. 2016;20:21–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pascal V, et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–22.

    Article  CAS  PubMed  Google Scholar 

  27. Kraneveld EA, et al. The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS One. 2012;7:e42770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial-fungal interactions. Nat Rev Microbiol. 2010;8:340–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bokor-Bratic M, Cankovic M, Dragnic N. Unstimulated whole salivary flow rate and anxiolytics intake are independently associated with oral Candida infection in patients with oral lichen planus. Eur J Oral Sci. 2013;121:427–33.

    Article  PubMed  Google Scholar 

  30. Gomes CC, et al. Aspergillus in endodontic infection near the maxillary sinus. Braz J Otorhinolaryngol. 2015;81:527–32.

    Article  PubMed  Google Scholar 

  31. Burgel PR, Paugam A, Hubert D, Martin C. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy. Infect Drug Resist. 2016;9:229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diaz PI, Hong BY, Dupuy AK, Strausbaugh LD. Mining the oral mycobiome: methods, components, and meaning. Virulence. 2017;8:313–23.

    Article  CAS  PubMed  Google Scholar 

  33. Mehdipour M, et al. Prevalence of Candida species in erosive oral lichen planus. J Dent Res Dent Clin Dent Prospects. 2010;4:14–6.

    PubMed  PubMed Central  Google Scholar 

  34. Artico G, et al. Prevalence of Candida spp., xerostomia, and hyposalivation in oral lichen planus--a controlled study. Oral Dis. 2014;20:e36–41.

    Article  CAS  PubMed  Google Scholar 

  35. Findley K, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498:367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fox EP, et al. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr Biol. 2014;24:2411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Janus MM, Willems HM, Krom BP. Candida albicans in multispecies oral communities; a keystone commensal? Adv Exp Med Biol. 2016;931:13–20.

    Article  PubMed  Google Scholar 

  38. Amiri MRJ, et al. Invasive forms of Candida and Aspergillus in sputum samples of pulmonary tuberculosis patients attending the tuberculosis reference laboratory in Ghaemshahr, Northern Iran: an analysis of samples collected during the past 10years. Int J Mycobacteriol. 2016;5(Suppl 1):S179–80.

    Article  Google Scholar 

  39. Fath BD, Scharler UM, Ulanowicz RE, Hannon B. Ecological network analysis: network construction. Ecol Model. 2007;208:49–55.

    Article  Google Scholar 

  40. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16:1024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He Y, et al. Dysbiosis of oral buccal mucosa microbiota in patients with oral lichen planus. Oral Dis. 2017;23:674–82.

    Article  CAS  PubMed  Google Scholar 

  42. Koliada A, et al. Association between body mass index and firmicutes/bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang K, et al. Analysis of oral microbial community and Th17-associated cytokines in saliva of patients with oral lichen planus. Microbiol Immunol. 2015;59:105–13.

    Article  CAS  PubMed  Google Scholar 

  44. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 2013;190:521–5.

    Article  CAS  PubMed  Google Scholar 

  45. Wheeler ML, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19:865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Silverman S Jr, Gorsky M, Lozada-Nur F, Giannotti K. A prospective study of findings and management in 214 patients with oral lichen planus. Oral Surg Oral Med Oral Pathol. 1991;72:665–70.

    Article  PubMed  Google Scholar 

  47. Conti HR, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016;20:606–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vesty A, Biswas K, Taylor MW, Gear K, Douglas RG. Evaluating the impact of DNA extraction method on the representation of human oral bacterial and fungal communities. PLoS One. 2017;12:e0169877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhou J, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:12083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu L, et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 2015;15:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu KL, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G. Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl Environ Microbiol. 2012;78:1523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kong Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics. 2011;98:152–3.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 2014;30:614–20.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schloss PD, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mar JC, Matigian NA, Quackenbush J, Wells CA. Attract: a method for identifying core pathways that define cellular phenotypes. PLoS One. 2011;6:e25445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Deng Y, et al. Molecular ecological network analyses. BMC Bioinformatics. 2012;13:113.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Research and Development Program of China (2016YFC1102700), the National Natural Science Foundation of China (Grant Nos. 81771085, 81430011, 81600858, and 81600874), and the Key Projects of Sichuan Provincial Health and Family Planning Commission (Grant No.16ZD021). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content of this chapter was modified from a paper reported by our group in Int J Oral Sci (Li Y et al. 2019). The related contents are reused with permission.

Conflicts of Interest

All of the authors declare no conflicts of interest.

Author Contributions

Conception and design of the experiments: Y.L., L. X., and X.Z.. Conducted the experiments: Y.L., B. Z., C.L., K.W., X. S., and J.V.N. Data processing and analysis: Q.T., Y.L., K.W., B.R., and J. H. Volunteer recruitment and sample collection: X. S., B. Z. B. C., and L. X. Manuscript writing: Y.L., K.W. B. Z., and C.L. Revision of the manuscript: Q.T., L.X., J.V.N., J.Z., W. S., and X.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Zhou .

Editor information

Editors and Affiliations

9.1 Supplementary Electronic Material(s)

Fig. S1

Fungal structure comparison by PCOA among healthy controls, reticular OLP, and erosive OLP. PCoA plot based on Bray-Curtis distances indicated no obvious separation. H healthy subjects, R reticular OLP, E erosive OLP (PDF 174 kb)

Fig. S2

The core mycobiota of saliva samples among healthy controls, reticular OLP, and erosive OLP. The model included the genera (above 1% of relative abundance) and OTUs (above 0.3% of relative abundance) in healthy controls (green), reticular OLP (blue), and erosive OLP (red), which were found in at least 50% of subjects. (a) genus level; (b) OTU level (PDF 183 kb)

Fig. S3

Network inferences for the complex fungal-bacterial relationships in OLP and healthy subjects. Each node represents an OTU colored by the phylum-level phylotypes, and each edge represents a significant pairwise association. Nine bacterial phylum and 2 fungal (Ascomycota, Basidiomycota) were included. H healthy subjects, R reticular OLP, E erosive OLP (PDF 295 kb)

Table S1

Summary of mycobiome-bacteriome sequencing data among healthy and OLP patients (DOCX 23 kb)

Table S2

Significant correlations between Candida and bacterial genera (DOCX 24 kb)

Table S3

Topological properties of co-occurrence networks of fungal communities in healthy subjects (H), reticular OLP (R), and erosive OLP (E) (DOCX 21 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y. et al. (2020). Mycobiome Dysbiosis in Oral Lichen Planus. In: Zhou, X., Li, Y. (eds) Atlas of Oral Microbiology: From Healthy Microflora to Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-7899-1_9

Download citation

Publish with us

Policies and ethics