Skip to main content

Algae as Miniature Wastewater Scavengers

  • Chapter
  • First Online:
Algae

Abstract

Anthropogenic activities are accountable for the release of various inorganic and organic substances into the environment leading to severe environmental pollution. Effluents released from various industrial, domestic, and agricultural sources ultimately find their way into water bodies rendering the water unfit for use. There is a pressing need to treat this water in order to meet the prerequisites of the growing human population. The primary and secondary treatment of wastewater removes the settled particles and organic matter providing apparently clear water. The secondary effluvium is although laden with inorganic forms of nitrogen (NO3 – N; NO2 – N; NH4+ – N) and phosphorus (PO43− – P) which causes eutrophication and other indelible issues due to the occurrence of heavy metals and refractory organic substances. Microalgae act as a very significant tool in treatment (tertiary) of wastewater and provide large quantities of invaluable multi-purpose algal biomass. They are very efficient in sequestering inorganic nutrients from wastewaters due to their high productivity rate and lesser space requirements compared to other terrestrial plants. Their property of sequestering toxic substances and heavy metals does not lead to the secondary pollution. Thus microalgae act as scavengers of the environment removing the pollutants from the wastewater and making it reusable at lower investments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  • Adamu CI, Nganje TN, Edet A (2015) Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environ NanotechnolEnviron Nanotechnol Monit Manag 3:10–21

    Google Scholar 

  • Al Raisi SAH, Sulaiman H, Suliman FE et al (2014) Assessment of heavy metals in leachate of an unlined landfill in the Sultanate of Oman. Int J Environ Sci Dev 5:60–63

    Google Scholar 

  • Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep Purif Rev 39:95–171

    Article  CAS  Google Scholar 

  • Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Heavy metals soils. Springer, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Daniel TWJ et al (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332

    Article  CAS  Google Scholar 

  • Baeza-Squiban A, Bouaicha N, Santa-Maria A et al (1990) Demonstration of the excretion by Dunaliella bioculata of esterases implicated in the metabolism of Deltamethrin, a pyrethroid insecticide. Bull Environ Contam 45:39–45

    Article  CAS  Google Scholar 

  • Bag P, Ansolia P, Mandotra SK, Bajhaiya AK (2019) Potential of blue-green algae in wastewater treatment. In: Application of microalgae in wastewater treatment. Springer, Cham, pp 363–381

    Chapter  Google Scholar 

  • Bhat SV, Melo JS, Chaugule BB et al (2008) Biosorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater 158:628–635

    Article  CAS  Google Scholar 

  • Brune DE, Lundquist TJ, Benemann JR (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Environ Eng 135:1136–1144

    Article  CAS  Google Scholar 

  • Cai-XiaoHua TSJ, Logan TJ et al (1995) Applications of eukaryotic algae for the removal of heavy metals from water. Mol Mar Biol Biotechnol 4(4):338–344

    Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  • Cao Y, Li X (2014) Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption 20:713–727

    Article  CAS  Google Scholar 

  • Carpenter M, Robertson J, Skierkowski P (1989) Biodegradation of an oily bilge waste using algae. In: Biotreatment. The use of microorganisms in the treatment of hazardous materials and hazardous wastes. The Hazardous Materials Control Research Institute, USA, pp 141–150

    Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of napthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Chaiprasert P (2011) Biogas production from agricultural wastes in Thailand. J Sustain Energ Environ Spec Issue 2011:63–65

    Google Scholar 

  • De la Nouë J, De Pauw N (1988) The potential of microalgal biotechnology. A review of production and uses of microalgae. Biotechnol Adv 6:725–770

    Article  Google Scholar 

  • De la Nouë J, Lalibereté G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • De Pauw N, Van Vaerenbergh E (1983) Microalgal wastewater treatment systems: potentials and limits. In: Ghette PF (ed) Phytodepuration and the employment of the biomass produced. Centro Ric. Produz, Animali, Reggio Emilia, pp 211–287

    Google Scholar 

  • Decostere B, De Craene J, Van Hoey S et al (2016) Validation of a microalgal growth model accounting with inorganic carbon and nutrient kinetics for wastewater treatment. Chem Eng J 285:189–197

    Article  CAS  Google Scholar 

  • Gale NL (1986) The role of algae and other microorganisms in metal detoxification and environmental clean-up. Biotechnol Bioeng Symp 16:171–180

    CAS  Google Scholar 

  • Glynn Henery J (1989) Water pollution. In: Heinke GW, Glynn Henery J (eds) Environmental science and engineering. Prentice-Hall Inc., Engelwood Cliffs, pp 297–329

    Google Scholar 

  • Goldman J (1979) Outdoor algal mass cultures-I. Appl Water Res 13:1–19

    Article  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Environ Microbiol 5(1):47–55

    Article  CAS  Google Scholar 

  • Gray NF (1989) Biology of wastewater treatment. Oxford Univ Press, Oxford

    Google Scholar 

  • Hammouda O, Gaber A, Abdel-Raouf N (1995) Microalgae and wastewater treatment. Ecotoxicol Environ Saf 31(3):205–210

    Article  CAS  Google Scholar 

  • Horan NJ (1990) Biological wastewater treatment systems. Theory and operation. John Wiley and Sons Ltd.. Chickester

    Google Scholar 

  • IAWPRC Study Group (1991) Bacteriophages as model viruses in water quality control. Water Res 25(5):529–545

    Article  Google Scholar 

  • Ibraheem IBM (1998) Utilization of certain algae in the treatment of wastewater. Ph.D. thesis, Faculty of Science, Al-Azhar University, Cairo, p 197

    Google Scholar 

  • Kallistova AY, Pimenov NV, Kozlov MN et al (2014) Microbial composition of the activated sludge of Moscow wastewater treatment plants. Microbiology 83(5):699–708. https://doi.org/10.1134/S0026261714050154

    Article  CAS  Google Scholar 

  • Kaplan D, Christiaen D, Arad S (1988) Binding of heavy metals by algal polysaccharides. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal Biotechnology, Elsevier Applied Science, London, pp 179–187

    Google Scholar 

  • Kamyab H, Fadhil M, Lee C et al (2014) Micro-macro algal mixture as a promising agent for treating POME discharge and its potential use as animal feed stock enhancer. J Teknol 68:1–4

    Google Scholar 

  • Kiran B, Thanasekaran K (2011) Copper biosorption on Lyngbya putealis: application of response surface methodology (RSM). Int Biodeter Biodegr 65:840–845

    Article  CAS  Google Scholar 

  • Kumar P, Mandotra SK, Suseela MR, Toppo K, Joshi P (2016) Characterization and transesterification of fresh water microalgal oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(6):857–864

    Article  CAS  Google Scholar 

  • Lavoie A, De la Nouë J (1985) Hyperconcentrated cultures of Scenedesmus obliquus. A new approach for wastewater biological tertiary treatment. Water Res 19:1437–1442

    Article  CAS  Google Scholar 

  • Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. J Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Lincolin EP, Earle JFK (1990) Wastewater treatment with microalgae. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing, The Hague, pp 429–446

    Google Scholar 

  • Lincoln EP, Hill DT (1980) An integrated microalgae system. In: Shelef G, Soeder CJ (eds) Algae biomass, pp 229–243

    Google Scholar 

  • Liu D, Keesing JK, He P et al (2013) The world’s largest macroalgal bloom in the Yellow Sea. China: Formation and implications. Estuar Coast Shelf Sci 129:2–10

    Article  CAS  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR et al (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol 201:222–229

    Article  CAS  Google Scholar 

  • Mandotra SK, Ahluwalia AS, Ramteke PW (2019) Production of high-quality biodiesel by Scenedesmus abundans. In: The role of microalgae in wastewater treatment. Springer, Singapore, pp 189–198

    Chapter  Google Scholar 

  • Mandotra SK, Lolu AJ, Kumar S et al (2020) Integrated approach for bioremediation and biofuel production using algae. In: Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore, pp 145–160

    Chapter  Google Scholar 

  • Mara DD, Pearson H (1986) Artificial freshwater environment: waste stabilization ponds. In: Rehm H-J, Reed G (eds) Biotechnology, vol 8. VCH Verlagsgesellschaft, Weinheim, pp 177–206

    Google Scholar 

  • Martin C, De la Nouë J, Picard G (1985a) Intensive culture of freshwater microalgae on aerated pig manure. Biomass 7:245–259

    Article  Google Scholar 

  • Martin C, Picard G, De la Nouë J (1985b) Epuration biologique du lisier de porc par production de biomass d’algues unicellulaires. MIRCEN J 1:173–184

    Article  CAS  Google Scholar 

  • Mouchet P (1986) Algal reactions to mineral and organic micropollutants, ecological consequences and possibilities for industrial scale application; a review. Water Res 20:399–412

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105

    Article  Google Scholar 

  • Ozay O, Ekici S, Baran Y et al (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43:4403–4411

    Article  CAS  Google Scholar 

  • Palmer CM (1969) A composite rating of algae tolerating organic pollution. J Phycol 5:78–82

    Article  CAS  Google Scholar 

  • Palmer CM (1974) Algae in American sewage stabilization’s ponds. Rev Microbiol (S-Paulo) 5:75–80

    Google Scholar 

  • Pandi M, Shashirekha V, Swamy M (2009) Biosorption of chromium from retan chrome liquor by cyanobacteria. Microbiol Res 164:420–428

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF et al (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy and US Department of Agriculture, p 78

    Google Scholar 

  • Pescod MB (1986) Integration of urban wastewater treatment and effluent re-use in irrigation. Water Pollut Contr 85(4):459–471

    CAS  Google Scholar 

  • Phang SM (1990) Algal production from agro-industrial and agricultural wastes in Malaysia. Ambio 19:415–418

    Google Scholar 

  • Phang SM (1991) The use of microalgae to treat agro-industrial wastewater. In: Proceedings of a seminar held at Murdoch University, Western Australia, 29th, November

    Google Scholar 

  • Phang SM, Ong KC (1988) Algal biomass production on digested palm oil mill effluent. Biol Wastes 25:177–191

    Article  CAS  Google Scholar 

  • Pouliot Y, Talbot P, De la Nouë J (1986) Biotraitement du purin de pore par production de biomass. Entropie 130(131):73–77

    Google Scholar 

  • Priac A, Morin-Crini N, Druart C et al (2017) Alkylphenol and alkylphenolpolyethoxylates in water and wastewater: a review of options for their elimination. Arab J Chem 10:3749–3773

    Article  CAS  Google Scholar 

  • Rai LC, Gour JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Redalje DG, Duerr EO, De la Nouë J et al (1989) Algae as ideal waste removers: biochemical pathways. In: Huntley ME (ed) Biotreatment of agricultural wastewater. CRC Press, Boca Raton, pp 91–110

    Google Scholar 

  • Rodrigues AM, Oliveira JFS (1987) Treatment of wastewaters from the tomato concentrate industry in high rate algal ponds. Water Sci Technol 19:43–49

    Article  CAS  Google Scholar 

  • Rule KL, Comber SDW, Ross D et al (2006) Diffuse sources of heavy metals entering an urban wastewater catchment. Chemosphere 63:64–72

    Article  CAS  Google Scholar 

  • Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5(10):677–682

    Article  Google Scholar 

  • Schimdt K (1991) Antioxidant vitamins and beta-carotene-effects on immunocompetence. Am J Clin Nutr 53:S383–S385

    Article  Google Scholar 

  • Sebastian S, Nair KVK (1984) Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus. Environ Pollut (Series A) 34:197–206

    Article  CAS  Google Scholar 

  • Shaaban AM, Haroun BM, Ibraheem IBM (2004) Assessment of impact of Microcystis aeruginosa and Chlorella vulgaris in the uptake of some heavy metals from culture media. In: Proceedings of the 3rd international conference on Biol Sci Fac Sci, Tanta University, 28–29 April 3, pp 433–450

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J et al (1998) A look Back at the U.S. Department of Energy’s aquatic species program – biodiesel from algae, NERL/TP-580-24190. National Renewable Energy Laboratory, Golden, CO., p 80401

    Google Scholar 

  • Shelef G, Soeder CJ (1980) Algal biomass: production and use. Elsevier/North Holland Biomedical Press, Amsterdam, p 852

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  Google Scholar 

  • Singh L, Pavankumar AR, Lakshmanan R (2012) Effective removal of Cu2+ ions from aqueous medium using alginate abiosorbent. Ecol Eng 38:119–124

    Article  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1995) Wastewater treatment with microorganisms. The Commercial Press, Hong Kong

    Google Scholar 

  • Tebbutt THY (1983) Principles of water quality control. Pergammon Press, Oxford

    Google Scholar 

  • Tuzen M, Sari A (2010) Biosorption of selenium from aqeous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158:200–206

    Article  CAS  Google Scholar 

  • Van Wagenen J, Pape ML, Angelidaki I (2015) Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique. Water Res 75:301–311

    Article  CAS  Google Scholar 

  • Yen HW (2004) Anaerobic bioassay of methane potential of microalgal biomass (Ph.D. dissertation). Biosystems Engineering, Clemson University, Clemson

    Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  CAS  Google Scholar 

  • Yuce M, Nazir H, Donmez G (2010) An advanced investigation on a new algal sensor determining Pb(II) ions from aqueous media. Biosens Bioelectron 26:321–326

    Article  CAS  Google Scholar 

  • Zhang G, Yang J, Liu H et al (2009) Sludge ozonation: disintegration, supernatant changes and mechanisms. Bioresour Technol 100(3):1505–1509

    Article  CAS  Google Scholar 

  • Zhang Q, Yu Z, Zhu L et al (2018) Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production. Water Res 139:144–157

    Article  CAS  Google Scholar 

  • Zhu ZY, Zhang J, Wu Y et al (2011) Hypoxia off the Changjiang (Yangtze River) estuary: oxygen depletion and organic matter decomposition. Mar Chem 125:108–116

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Chairperson, Department of Botany, Punjab University, Chandigarh for providing internet access to search the relevant literature and for the necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afreen J. Lolu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lolu, A.J., Ahluwalia, A.S., Sidhu, M.C., Reshi, Z.A. (2021). Algae as Miniature Wastewater Scavengers. In: Mandotra, S.K., Upadhyay, A.K., Ahluwalia, A.S. (eds) Algae. Springer, Singapore. https://doi.org/10.1007/978-981-15-7518-1_5

Download citation

Publish with us

Policies and ethics