Skip to main content

Efficacy of Microorganisms in the Removal of Toxic Materials from Industrial Effluents

  • Chapter
  • First Online:
Microbial Rejuvenation of Polluted Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 27))

Abstract

Industrial wastewater creates major environmental trouble if released without proper treatment. Large volumes of water contaminated with various industrial and anthropogenic activities can produce hazardous effects on the environment and the living organisms. Various industries discharge toxic materials, heavy metals, and anions into the environment that considerably enhanced the deterioration of environment, flora, and fauna, and significantly pose threats to the ecosystem. These noxious materials cause serious health issues, if they surpass the acceptable limit in water. There is a big challenge to remove toxic pollutants from water and wastewater. Some traditional methods such as coagulation, chemical precipitation, carbon adsorption, oxidation, ion exchange, evaporations, and membrane processes are found to be helpful in the treatment of wastewater. However, these methods are unlikable from both environmental and cost-effective viewpoints because these require utilizing chemical compounds, huge energy and also do not degrade the complete range of pollutants. Therefore, novel and more effective treatment methods of removing toxic compounds from water and wastewater needed to be develop. In this regard, the efforts have been made toward bioremoval applications and its efficiency for the removal of hazardous materials from water and wastewater by using microorganisms. Among all treatment methods introduced above, the biological treatment method is a proficient, inexpensive, simple, and environment friendly process for treating pollutants. Use of microbial technology in the treatment of pollutants gained a momentum of efficient degradation ability, simple technical operation, lower process time, low energy requirements, no secondary pollution, and long-term viability.

In this chapter, we are aimed to make comprehensive description about microorganisms and their effectiveness on the removal of various hazardous materials which are released from different industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HS, Ismail MI, Mostafa MT, Sulaymon HA (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z, Calik A, Dursun AY, Demircan Z (1999) Biosorption of iron(III)–cyanide complex ions on Rhizopus arrhizus: application of adsorption isotherms. Process Biochem 34:483–491

    Article  CAS  Google Scholar 

  • Ali S, Shekhar S, Bhattacharya P, Verma G, Chandrasekhar T, Chandrashekhar AK (2018) Elevated fluoride in groundwater of Siwani Block, Western Haryana, India: a potential concern for sustainable water supplies for drinking and irrigation. Groundwater Sustain Dev 7:410–420

    Article  Google Scholar 

  • Ali S, Fakhri Y, Golbini M, Thakur SK, Alinejad A, Parseh I, Shekhar S, Bhattacharya P (2019) Concentration of fluoride in groundwater of India: a systematic review, meta-analysis and risk assessment. Groundwater Sustain Dev 9:100224

    Article  Google Scholar 

  • Arlappa N, Aatif Qureshi I, Srinivas R (2013) Fluorosis in India: an overview. Int J Res Dev Health 1:97–102

    Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SM (2007) Decolorization of textile dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Article  CAS  PubMed  Google Scholar 

  • Babu GRV, Wolfram JH, Chapatwala KD (1992) Conversion of sodium cyanide to carbon dioxide and ammonia by immobilized cells of Pseudomonas putida. J Ind Microbiol 9:235–238

    Google Scholar 

  • Bakkaloglu I, Butter TJ, Evison LM, Holland IC (1998) Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Sci Technol 38:268–277

    Article  Google Scholar 

  • Balagopalan C, Rajalakshmy L (1998) Cyanogen accumulation in environment during processing of cassava (Manihot esculenta Crantz) for starch and sago. Water Air Soil Pollut 102:407–413

    Article  CAS  Google Scholar 

  • Barclay M, Tett BA, Knowles CJ (1998) Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions. Enzym Microb Technol 23:321–330

    Article  CAS  Google Scholar 

  • Barclay M, Day JC, Thompson IP, Knowles CJ, Bailey MJ (2002) Substrate-regulated cyanide hydratase (chy) gene expression in Fusarium solani: the potential of a transcription-based assay for monitoring the biotransformation of cyanide complexes. Environ Microbiol 4:183–189

    Article  CAS  PubMed  Google Scholar 

  • Baxter J, Cummings SP (2006) The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie Van Leeuwenhoek 90:1–17

    Article  CAS  PubMed  Google Scholar 

  • Benaissa H, Elouchdi MA (2007) Removal of copper ions from aqueous solutions by dried sunflower leaves. Chem Eng Process 46:614–622

    Article  CAS  Google Scholar 

  • Boatto GNM, Carta A (2004) Determination of phenol and o-cresol by GC/MS in a fatal poisoning case. Forensic Sci Int 139(2–3):191–194

    Article  CAS  PubMed  Google Scholar 

  • Bordo D, Forlani F, Spallarossa A, Colnaghi R, Carpen A, Bolognesi M, Pagani S (2001) A persulfurated cysteine promotes active site reactivity in Azotobacter vinelandii Rhodanese. Biol Chem 382:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Bruce RMSJ, Neal MW (1987) Summary review of the health effects associated with phenol. Toxicol Ind Health 3:535–568

    Article  CAS  PubMed  Google Scholar 

  • Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J Biosci Bioeng 103:509–513

    Article  CAS  PubMed  Google Scholar 

  • Burton CP, Akagi JM (1971) Observations of the rhodanese activity of Desulfotomaculum nigrificans. J Bacteriol 107:375–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo AJ (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50:251–264

    Article  PubMed  Google Scholar 

  • Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A 88(20):8915–8919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Mukherjee A, Das TK (2013) Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: an implication of bioremediation of lead from liquid media. Int Biodeterior Biodegrad 84:134–142

    Article  CAS  Google Scholar 

  • Chang J, Chen B, Lin Y (2004) Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresour Technol 91:243–248

    Article  CAS  PubMed  Google Scholar 

  • Chapatwala KD, Babu GRV, Vijaya OK, Kumar KP, Wolfram JH (1998) Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida. J Ind Microbiol 20:28–33

    CAS  Google Scholar 

  • Chubar N, Behrends T, Behrends PV (2008) Biosorption of metals (Cu2+, Zn2+) and anions (F, H2PO4 ) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens. J Colloid Interface Sci 65:126–133

    CAS  Google Scholar 

  • Cipollone R, Bigotti MG, Frangipani E, Ascenzi P, Visca P (2004) Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa. Biochem Biophys Res Commun 325:85–90

    Article  CAS  PubMed  Google Scholar 

  • Collins P, Knowles C (1983) The utilization of nitriles and amides by Nocardia rhodochrous. J Gen Microbiol 129:248–254

    Google Scholar 

  • Costa CN, Meurer EJ, Bissani CA, Selbach PA (2006) Contaminantes e poluentes do solo e do ambiente. EJ Fundamentos de química do solo. Porto Alegre, Evangraf

    Google Scholar 

  • Cummings TF (2004) The treatment of cyanide poisoning. Occup Med 54:82

    Article  CAS  Google Scholar 

  • Darisimall (2006) Sore throat lozenges and sprays. http://store.darisimall.com/sothlosp.html

  • Datta PS, Deb DL, Tyagi SK (1996) Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. J Contamin Hydrol 24(1):85–96

    Article  CAS  Google Scholar 

  • Deichmann WB, Keplinger M (1981) Phenols and phenolic compounds. In: Clayton GD, Clayton FE (eds) Patty’s industrial hygiene and toxicology. Wiley, New York, pp 2567–2627

    Google Scholar 

  • Der YB, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 7:1211–1235

    Google Scholar 

  • Dubey SK, Holmes DS (1995) Biological cyanide destruction mediated by microorganisms. World J Microbiol Biotechnol 11:257–265

    Article  CAS  PubMed  Google Scholar 

  • Dunnil PM, Fowden L (1965) Enzymatic formation of β-cyanoalanine from cyanide by E. coli extract. Nature 208:1206–1207

    Article  Google Scholar 

  • Dursun AY, Alik AC, Aksu Z (1999) Degradation of ferrous (II) cyanide complex ions by Pseudomonas fluorescens. Proc Biochem 34:901–908

    Google Scholar 

  • Dwivedi N, Majumder CB, Mondal P, Dwivedi S (2011) Biological treatment of cyanide containing wastewater. Res J Chem Sc 1(7):15–21

    CAS  Google Scholar 

  • Dwivedi N, Majumder CB, Mondal P (2014) Studies of kinetic and equilibrium isotherm models for the sorption of cyanide ion on to almond shell. Res J Chem Sc 4(2):20–24

    Google Scholar 

  • Dwivedi N, Balomajumder C, Mondal P (2016a) Comparative evaluation of cyanide removal by adsorption, biodegradation, and simultaneous adsorption and biodegradation (SAB) process using Bacillus cereus and almond shell. J Environ Biol 37:551–556

    CAS  PubMed  Google Scholar 

  • Dwivedi N, Balomajumder C, Mondal P (2016b) Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resour Ind 15:28–40

    Article  Google Scholar 

  • Dwivedi N, Majumder CB, Mondal P (2016c) Bioremoval of cyanide from aqueous solution using Tectona grandis leaves powder: a potential bioadsorbent. Int J Environ Technol Manag 19(3/4):198–219

    Article  CAS  Google Scholar 

  • Dwivedi S, Mondal P, Balomajumder C (2016d) Bioremoval of fluoride from synthetic water using Gram-negative Bacteria Shewanella putrefaciens. J Hazard Toxic Radioact Waste 04016023:1–6

    Google Scholar 

  • Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:1–6

    Article  CAS  Google Scholar 

  • El Nemr A, El-Sikaily A, Khaled A, Abdelwahab O (2011) Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem Eng J 168(2):707–714

    Article  CAS  Google Scholar 

  • Essadki AH, Gourich B, Vial C, Delmas H, Bennajah M (2009) Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor. J Hazard Mater 168:1325–1333

    Article  CAS  PubMed  Google Scholar 

  • Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzym Microb Technol 36:849–854

    Article  CAS  Google Scholar 

  • Ezzi IM, Pascual AJ, Gould JB, Lynch MJ (2003) Characterisation of the rhodanese enzyme in Trichoderma spp. Enzym Microb Technol 32:629–634

    Article  CAS  Google Scholar 

  • Fairbrother L, Shapter J, Brugger J, Southam G, Pring A, Reith F (2009) Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat au surfaces. Chem Geol 265:3–4

    Article  CAS  Google Scholar 

  • Fang H, Wenrong H, Yuezhong L (2004) Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere 57(4):293–301

    Article  CAS  Google Scholar 

  • Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) World Health Organization (WHO) fluoride in drinking-water. ISBN: 1900222965. IWA Publishing, London

    Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effect of contaminants in aquatic ecosystem. Sci Total Environ 3170:207–233

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Fowden L, Bell EA (1965) Cyanide metabolism by seedling. Nature 206:110–112

    Article  Google Scholar 

  • Franciscon E, Zille A, Garboggini FF (2009) Microaerophilic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44(4):446–452

    Article  CAS  Google Scholar 

  • Frederick TM, Taylor EA, Willis JL, Shultz MS, Woodruff PJ (2013) Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose. Biotechnol Lett 35(8):1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    Article  CAS  Google Scholar 

  • Gayathri KV, Vasudevan N (2010) Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment. J Bioremed Biodegr 1:104

    Google Scholar 

  • Gerasimova T, Novikov A, Osswald S, Yanenko A (2004) Screening, characterization and application of cyanide-resistant nitrile hydratases. Eng Life Sci 4:543–546

    Article  CAS  Google Scholar 

  • Giraldo L, Moreno-Piraján JC (2010) Adsorption studies of cyanide onto activated carbon and γ-alumina impregnated with cooper ions. Nat Sci 10:1066–1072

    Google Scholar 

  • Godlewska-Zyłkiewicz B (2006) Microorganisms in inorganic chemical analysis. Anal Bioanal Chem 384(1):114–123

    Article  PubMed  CAS  Google Scholar 

  • Goldhust A, Bohak Z (1989) Induction, purification and characterization of the nitrilase of Fusarium oxysporum. Biotechnol Appl Biochem 11:581–601

    Google Scholar 

  • Goldman P (1972) Enzymology of carbon-halogen bonds. In: Degradation of synthetic organic molecules in the biosphere. National Academy of Sciences Publication, Washington, DC, pp 147–165

    Google Scholar 

  • Gonen F, Serin DS (2012) Adsorption study on orange peel: removal of Ni(II) ions from aqueous solution. Afr J Biotechnol 11(5):1250–1258

    CAS  Google Scholar 

  • Grover R, Waite DT, Cessna AJ, Nicholaichuk W, Irvin DG, Kerr LA, Best K (1997) Magnitude and persistence of herbicide residues in farm dugouts and ponds in the Canadian prairies. Environ Toxicol Chem 16:638–643

    Article  CAS  Google Scholar 

  • Guo J, Zhou J, Dong WD, Tian C, Wang P, Uddina MS, Yu H (2007) Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Res 41(2):426–432

    Article  CAS  Google Scholar 

  • Gupta N, Majumder CB, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1

    Article  CAS  PubMed  Google Scholar 

  • Gurbuz F, Ciftci H, Akcil A, Karahan AG (2004) Microbial detoxification of cyanide solutions: a new biotechnological approach using algae. Hydrometallurgy 72:167–176

    Article  CAS  Google Scholar 

  • Gurbuz F, Ciftci H, Akcil A (2009) Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J Hazard Mater 162:74–79

    Article  CAS  PubMed  Google Scholar 

  • Gurulakshmi M, Sudarmani DNP, Venba R (2008) Biodegradation of leather acid dye by Bacillus subtilis. Advanced Biotech 7:12–18

    Google Scholar 

  • Hamdan SS, El-Naas MH (2014) Characterization of the removal of chromium (VI) from groundwater by electrocoagulation. J Ind Eng Chem 20:2775–2781

    Article  CAS  Google Scholar 

  • HazDat (2006) ATSDR’s hazardous substance release and health effects database. Environ Sci Technol 18:483–490

    Google Scholar 

  • He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Meng Q, Fang SX (2010) Characterization of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Article  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in pseudomonas putida: Pseudothioneins. Environ Health Perspect 65:5–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hori TS, Avilez LM, Inoue KL, Moraes G (2006) Metabolic changes induced by chronic phenol exposure in matrinxa Brycon cephalus (teleostei chracidae) juveniles. Comp Biochem Physiol 143:67–72

    CAS  Google Scholar 

  • Huertas MJ, Sáez LP, Roldán MD, Luque-Almagro VM, Martínez-Luque M, Blascoc R, Castillo F, Moreno-Vivián GG (2010) Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor, influence of pH. J Hazard Mater 179:72–78

    Article  CAS  PubMed  Google Scholar 

  • Ibuot A, Dean AP, McIntosh OA, Pittman JK (2017) Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater tolerant microalgae strains. Algal Res 24:89–96

    Article  Google Scholar 

  • Ilyina A, Castillo SMI, Villarreal SJA, Ramirez EG, Candelas RJ (2003) Isolation of soil bacteria for bioremediation of hydrocarbon contamination. Весthhk Мосkobckoro Yhhbepchteta 3 44(1):88–91

    Google Scholar 

  • Indu, Shashidhar (2004) Microbial degradation of phenol by a species of Alcaligenes isolated from a tropical soil. Soil Sci 3(4):47–51

    Google Scholar 

  • Ingvorsen K, Godtfredsen SE, Hojer-Pedersen B, Nordisk N (1992) Microbial cyanide converting enzymes, their production and use, US Patent 5:116,744.

    Google Scholar 

  • Jacks G, Bhattacharya P, Chaudhary V, Singh KP (2005) Controls on the genesis of some high-fluoride groundwaters in India. Appl Geochem 20:221–228

    Article  CAS  Google Scholar 

  • Jame SA, Rashidul Alam AKM, Fakhruddin ANM, Alam MK (2010) Degradation of phenol by mixed culture of locally isolated Pseudomonas Species. J Bioremed Biodegr 1:102

    Article  CAS  Google Scholar 

  • Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY (2009) Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 172(1):224–228

    Article  CAS  PubMed  Google Scholar 

  • Kalme S, Parshetti G, Jadhav S, Govindwar S (2007) Biodegradation of benzidine based dye Direct blue 6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Kalyani D, Telke A, Dhanve R, Jadhav J (2009) Ecofriendly biodegradation and detoxification of reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Article  CAS  PubMed  Google Scholar 

  • Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing water: a review. Ind J Exp Biol 41:1068

    CAS  Google Scholar 

  • Kimambo V, Bhattacharya P, Mtalo F, Mtamba J, Ahmad A (2019) Fluoride occurrence in groundwater systems at global scale and status of defluoridation-state of the art. Groundwater Sustain Dev 9:100223

    Article  Google Scholar 

  • Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70(8):4582–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalska M, Bodzek M, Bohdziewicz J (1998) Biodegradation of phenols and cyanides using membranes with immobilized organisms. Process Biochem 33:189–197

    Google Scholar 

  • Kumar M, Das N, Goswami R, Sarma KP, Bhattacharya P, Ramanathan A (2016) Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system. Chemosphere 164:657–667

    Article  CAS  PubMed  Google Scholar 

  • Kundu MC, Mandal B (2009) Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. Environ Monit Assess 152(1–4):97–103

    Article  CAS  PubMed  Google Scholar 

  • Kwon HK, Woo SH, Park JM (2002) Degradation of tetracyanonickelate(II) by Cryptococcus humicolus MCN2. FEMS Microbiol Lett 214:211–216

    Article  CAS  PubMed  Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, Zhong M (2017) The Lancet Commission on pollution and health. Lancet 391(10119):462–512. https://doi.org/10.1016/S0140-6736

    Article  PubMed  Google Scholar 

  • Larsen M, Ucisik A, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39(7):2135–2142

    Article  CAS  PubMed  Google Scholar 

  • Leonard D, Lindely ND (1998) Growth of Ralstoni eutropha on inhibitory concentrations of phenol- diminished growth can be attributed to hydrophobic perturbation of phenol hydroxylase activity. Enzyme Microbiol Technol 25:71–277

    Google Scholar 

  • Li L, Li J, Shao C, Zhang K, Yu S, Gao N, Deng Y, Yin D (2014) Arsenic removal in synthetic ground water using iron electrolysis. Sep Purif Technol 122:225–230

    Article  CAS  Google Scholar 

  • Lin L, Xu X, Papelis C, Cath TY, Xu P (2014) Sorption of metals and metalloids from reverse osmosis concentrate on drinking water treatment solids. Sep Purif Technol 134:37–45

    Article  CAS  Google Scholar 

  • Liu G, Yu Y, Hou J, Xue W, Liu X, Liu Y, Liu Z (2014) An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead-acid battery factory. Ecol Indic 47:210–218

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Mamilwar BM, Bhole AG, Sudame AM (2012) Removal of fluoride from ground water by using adsorbent. Int J Eng Res Appl 2:334–338

    Google Scholar 

  • Mateos LM, Villadangos AF, Rubia AG (2017) The arsenic detoxification system in corynebacteria: basis and application for bioremediation and redox control. Adv Appl Microbiol 99:103–137

    Article  CAS  PubMed  Google Scholar 

  • Matsumotto N, Uemoto H, Saiki H (2007a) Case study of electrochemical metal removal from actual sediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use. Water Res 4:2541–2551

    Article  CAS  Google Scholar 

  • Matsumotto N, Uemoto H, Saiki H (2007b) Case study of electrochemical metal removal from actual sediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use. Water Res 41:2541–2551

    Article  CAS  Google Scholar 

  • Maulin PS (2013) Microbial degradation of textile dye (Remazol black B) by Bacillus spp. ETL-2012. J Appl Environ Microbiol 1:6–11

    Google Scholar 

  • Meenakshi S, Sundaram CS, Sukumar R (2008) Enhanced fluoride sorption by mechanochemically activated kaolinites. J Hazard Mater 153:164–172

    Article  CAS  PubMed  Google Scholar 

  • Megarbane B, Delahaye A, Goldgran-Toledano D, Baud FJ (2003) Antidotal treatment of cyanide poisoning. J Chin Med Assoc 66:193

    PubMed  Google Scholar 

  • Mester T, Tien M (2000) Oxidative mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeterior Biodegrad 46:51–59

    Article  CAS  Google Scholar 

  • Meyers PR, Rawlings DE, Woods DR, Lindsey GG (1993) Isolation and characterization of a cyanide dihydratase for Bacillus pumilus C1. J Bacteriol 175:6105–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles EW (1986) Pyridoxal phosphate enzymes catalyzing β-elimination and β-replacement reactions. In: Dolphin D, Poulson R, Vramovic OA (eds) Vitamin B6 pyridoxal phosphate chemical, biochemical, and medical aspects. Wiley, New York, pp 253–310

    Google Scholar 

  • Ministry of Drinking Water and Sanitation. State/UT-wise number of arsenic, fluoride, iron, nitrate, salinity and heavy metal affected habitations with population as reported by the states in IMIS of this Ministry as on 01.01.2019

    Google Scholar 

  • Mohammad S (2005) HPLC determination of four textile dyes and studying their degradation using spectrophotometric technique. Master of Science Thesis, An-Najah National University, Palestine

    Google Scholar 

  • Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manag 91(1):67–77

    Article  CAS  Google Scholar 

  • Molina-Guijarro JM, Perez J, Manoz-Dorado J, Guillen F, Moya R, Hernandez M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12(1):3–21

    Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2008) Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J Basic Microbiol 48:521–525

    Article  CAS  PubMed  Google Scholar 

  • Monser L, Adhoum N (2002) Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep Purif Technol 26:137–146

    Article  CAS  Google Scholar 

  • Moussavi G, Khosravi R (2010) Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: parametric experiments, kinetics and equilibrium analysis. J Hazard Mater 183:724–730

    Article  CAS  PubMed  Google Scholar 

  • Mudder TI, Botz MM (2004) Cyanide and society: a critical review. Eur J Miner Process Environ Prot 4:62–74

    Google Scholar 

  • Mufaddal IE, James ML (2002) Cyanide catabolizing enzymes in Trichoderma spp. enzyme. Microbiol Technol 31:1042–1047

    Article  Google Scholar 

  • Mukherjee D, Bhttacharya S, Kumar V, Moitra J (1990) Biological significance of phenol accumulation in different organs of a murrel, Chamnna punctatus and the common carp Cyprinus carpio. Biomed Environ Sci 3:337–342

    CAS  PubMed  Google Scholar 

  • Mukherjee D, Guha D, Kumar V, Chakroborty S (1991) Impairment of steroidogenesis and reproduction in sexually mature. Cyprinus carpio by phenol and sulfide under laboratory condition. Aquatic Toxicol 21:29–40

    Article  CAS  Google Scholar 

  • Nagahara N, Ito T, Minami M (1999) Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification. Histol Histopathol 14:1277–1286

    CAS  PubMed  Google Scholar 

  • National Institute of Hydrology and Central Ground Water Board (2010) Mitigation and remedy of groundwater arsenic menace in India: a vision document, prepared under the aegis of Ministry of Water Resources, GOI

    Google Scholar 

  • Nawaz SM, Chapatwala DK, Wolfram HJ (1989) Degradation of acetonitrile by Pseudomonas putida. Appl Environ Microbiol 55:2267–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52(9:1353–1359

    Article  CAS  Google Scholar 

  • Okoduwa SIR, Igiri B, Udeh CB, Edenta C, Gauje B (2017) Tannery effluent treatment by yeast species isolates from watermelon. Toxics 5(1):6

    Article  PubMed Central  CAS  Google Scholar 

  • Ozel YK, Gedikli S, Aytar P, Unal A, Yamaç M, Ahmet Ç, Kolankaya N (2010) New fungal biomasses for cyanide biodegradation. J Biosci Bioeng 110(4):431–435

    Article  CAS  PubMed  Google Scholar 

  • Paller G, Hommel RK, Kleber HP (1995) Phenol degradation by Acinetobacter calcoaceticus NCIB 8250. J Basic Microbiol 35:325–335

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Zhang Q, Du W, Zhang W, Pan B, Zhang Q (2007) Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism. Water Res 41:3103–3111

    Article  CAS  PubMed  Google Scholar 

  • Parshetti G, Kalme S, Saratale G, Govindwar S (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim Slov 53(4):492–498

    CAS  Google Scholar 

  • Patil YB, Paknikar KM (2000) Development of a process for biodetoxification of metal cyanides from wastewater. Process Biochem 35:1139–1151

    Article  CAS  Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A (ed) Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, Rijeka, pp 605–632

    Google Scholar 

  • Picardal FW, Arnold RG, Couch H, Little AM, Smith ME (1993) Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl Environ Microbiol 59:3763–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Ind J Exp Biol 44(618):626

    Google Scholar 

  • Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H, Tavares T (2009) Biosorptive performance of an Escherichia coli biofilm supported on zeolite NaY for the removal of Cr(VI), Cd(II), Fe(III) and Ni(II). Chem Eng J 152:110–115

    Article  CAS  Google Scholar 

  • Rafi F, Fraeankalin W, Cerniglia CE (1990) Optimization of cultural condition for decolorization of textile effluent. Appl Environ Microbiol 56:2146

    Google Scholar 

  • Raghav S, Kumar D (2018) Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. J Chem Eng Data 63:1682–1697

    Article  CAS  Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water-a comprehensive review. Resour Efficient Technol 2:175–184

    Article  Google Scholar 

  • Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raybuck SA (1992) Microbes and microbial enzymes for cyanide degradation. Biodegradation 3:3–18

    Article  CAS  PubMed  Google Scholar 

  • Roy AB, Trudinger PA (1977) The biochemistry of inorganic compounds of Sulphur. Microb Ecol 4:9–25

    Google Scholar 

  • Sag Y, Kutsal T (2007) Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem Eng J 6:145–151

    Article  Google Scholar 

  • Saha NC, Bhunia F, Kaviraj A (1999) Toxicity of phenol to fish and aquatic ecosystems. Bull Environ Contam Toxicol 63:198–202

    Article  Google Scholar 

  • Sahranavard M, Ahmadpour A, Doosti MR (2011) Biosorption of hexavalent chromium ions from aqueous solutions using almond green hull as a low-cost biosorbent. Eur J Sci Res 58(3):392–400

    Google Scholar 

  • Sexton AC, Howlett BJ (2000) Characterisation of a cyanide hydratasegene in the phytopathenogenic fungus Leptosphaeria maculans. Mol Gen Genet 263:463–470

    Article  CAS  PubMed  Google Scholar 

  • Shalaby AM, Mousa MA, Tag Elden HA (2007) Toxicological effect of butataf herbicide on some physiological aspects and the reproductive performance of Nile Tila Oreochromis niloticus. Egypt J Aquat Biol Fish 11:145–163

    Article  Google Scholar 

  • Sinha SN, Paul D (2014) Heavy metal tolerance and accumulation by bacterial strains isolated from waste water. J Chem Biol Phys Sci 4:812–817

    Google Scholar 

  • Sivasankar V (2016) A world ubiquitous compound, its chemistry, and ways of contamination. In: Surface modified carbons as scavengers for fluoride from water. Springer, Cham

    Chapter  Google Scholar 

  • Soltmann U, Matys S, Kieszig G, Pompe W, Bottcher H (2010) Algae-silica hybrid materials for biosorption of heavy metals. J Water Resour Prot 2(2):115–122

    Article  CAS  Google Scholar 

  • Sullivan JB, Krieger CR (2001) Clinical environmental health and toxic exposures, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, p 705

    Google Scholar 

  • Tanaka SCN, Kita T (1998) Distribution of phenol in a fatal poisoning case determined by gas chromatography/mass spectrometry. J Forensic Sci 43:1086–1088

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tebutt T (1983) Relationship between natural water quality and health. United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • Thelwell C, Robinson NJ, Turner-Cavet JS (1998) An SmtB like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci U S A 95(18):10728–10733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullhyan A, Ghosh UK (2014) Removal of 2,4-dichlorophenol by simultaneous adsorption and biodegradation (SAB) using low cost adsorbent. Global NEST J 16(4):616–627

    Article  Google Scholar 

  • USEPA (1985) Drinking water criteria document for cyanide, vol 84, p 192-1

    Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291

    Article  CAS  PubMed  Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegrad 60(2):97–102

    Article  CAS  Google Scholar 

  • Vithanage M, Bhattacharya P (2015) Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett 13:131–147

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Su JQ, Zheng XW, Tian Y (2009) Bacterial decolorization and degradation of the reactive dye reactive red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad 63(4):395–399

    Article  CAS  Google Scholar 

  • WHO (1984) Fluorine and fluorides, environmental health criteria 36. World Health Organization, Geneva

    Google Scholar 

  • Williams RJ, Evans WC (1975) The metabolism of benzoate by Moraxella sp. through anaerobic nitrate respiration. Biochem J 148:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AK, Abbassi R, Gupta A, Dadashzadeh M (2013) Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol Eng 52:211–218

    Article  Google Scholar 

  • Yang T, Chen M, Wang J (2015) Genetic and chemical modification of cells for selective separation and analysis of heavymetals of biological or environmental significance. Trends Anal Chem 66:90–102

    Article  CAS  Google Scholar 

  • Young CA, Jordan TS (2004) Cyanide remediation: current and past technologies. In: Proceedings of the 10th annual conference on hazardous waste research, pp 104–129

    Google Scholar 

  • Zollinger H (1991) Color chemistry: synthesis, properties and application of organic dyes and pigments. Wiley 496:456–980. ISBN 3527283528

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, N., Dwivedi, S., Adetunji, C.O. (2021). Efficacy of Microorganisms in the Removal of Toxic Materials from Industrial Effluents. In: Adetunji, C.O., Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 27. Springer, Singapore. https://doi.org/10.1007/978-981-15-7459-7_15

Download citation

Publish with us

Policies and ethics