Skip to main content
Log in

Microbes and microbial enzymes for cyanide degradation

  • Focus Section: Microbial Metabolism of C1-Pollutants
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Cyanide is an important industrial chemical produced on a grand scale each year. Although extremely toxic to mammalian life, cyanide is a natural product generated by fungi and bacteria, and as a result microbial systems have evolved for the degradation of cyanide to less toxic compounds. The enzymes which utilize cyanide as a substrate can be categorized into the following reaction types: substitution/addition, hydrolysis, oxidation, and reduction. Each of these categories is reviewed with respect to the known biochemistry and feasibility for use in treatment of cyanide containing wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AkopyanTN, BraunsteinAE & GoryachenkovaEV (1975) Beta-cyanoalanine synthase: purification and characterization. Proc. Nat. Acad. Sci. USA 72: 1617–1621

    Google Scholar 

  • AtkinsonA (1975) Bacterial cyanide detoxification. Biotech. Bioeng. 17: 457–460

    Google Scholar 

  • BasheerS, KutO, PrenosilJ & BourneJ (1992) Kinetics of enzymatic degradation of cyanide. Biotech. and Bioeng. 39: 629–634

    Google Scholar 

  • BraunsteinAE & GoryachenkovaE (1984) The β-replacement specific pyridoxal-P lyases. Adv. Enzymol. 56: 1–89

    Google Scholar 

  • CastricPA (1981) The metabolism of hydrogen cyanide by bacteria. In: VenneslandB, ConnEE, KnowlesCJ, WestleyJ & WissingF (Eds) Cyanide in Biology (pp 233–261). Academic Press, New York

    Google Scholar 

  • CerlettiP (1986) Seeking a better job for an under-employed enzyme: Rhodanese. Trends in Biochem. Sci. 11: 369–372

    Google Scholar 

  • ChurchichJE (1986) Pyridoxal phosphate enzymes catalyzing γ elimination or replacement. In: DolphinD, PoulsonR & AvramovicO (Eds) Vitamin B6 Pyridoxal Phosphate Chemical, Biochemical, and Medical Aspects, Part B (pp 311–324). John Wiley & Sons, New York

    Google Scholar 

  • ClarkePM (1986) Enzymatic treatment of cyanide bearing effluents. In: EcclesH & HuntS (Eds) Immobilision Ions Bio-sorption (pp 245–256). Howard, Chichester, UK

    Google Scholar 

  • DorrPK & KnowlesCJ (1989) Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol. Lett. 60: 289–294

    Google Scholar 

  • EveredD & HarnettS (1988) Cyanide Compounds in Biology. John Wiley & Sons, New York

    Google Scholar 

  • FallonRD, CooperDA, SpeeceR & HensonM (1991) Anaerobic biodegradation of cyanide under methanogenic conditions. Appl. Environ. Microbiol. 57: 1656–1662

    Google Scholar 

  • FedorakPM & HrudeySE (1987) Inhibition of anaerobic degradation of phenolics and methanogenesis by coal coking wastewater. Water Sci. Tech. 19: 219–228

    Google Scholar 

  • FedorakPM & HrudeySE (1989) Cyanide transformation in anaerobic phenol-degrading methanogenic cultures. Water Sci. Tech. 21: 67–76

    Google Scholar 

  • FedorakPM, RobertsDJ & HrudeySE (1986) The effects of cyanide on the methanogenic degradation of phenolic compounds. Water Res. 20: 1315–1320.

    Google Scholar 

  • FerrisJP (1983) Biological formation and metabolic transformations of compounds containing the cyano group. In: PataiS & RappoportZ (Eds) The Chemistry of Functional Groups Supplement C (pp 325–339). John Wiley & Sons, New York

    Google Scholar 

  • FinneganI, ToerienS, AbbotL, SmitF & RaubenheimerHG (1991) Identification and characterisation of an Acinetobacter sp. capable of assimilation of a range of cyano-metal complexes, free cyanide ions, and simple nitriles. Appl. Microbiol. Biotech. 36: 142–144

    Google Scholar 

  • FryWE & EvansPH (1977) Association of formamide hydrolyase with fungal pathogenicity to cyanogenic plants. Phytopathology 67: 1001–1006

    Google Scholar 

  • FryWE & MillarRL (1972) Cyanide degradation by an enzyme from Stemphylium Ioti. Arch. Biochem. Biophys. 151: 468–474

    Google Scholar 

  • FryWE & MyersDF (1981) Hydrogen cyanide metabolism by fungal pathogens of cyanogenic plants. In: VenneslandB, ConnEE, KnowlesCJ, WestleyJ & WissingF (Eds) Cyanide in Biology (pp 321–334). Academic Press, New York

    Google Scholar 

  • HardyRWF & KnightJrE (1967) ATP-dependent redeuction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim. Biophys. Acta. 139: 69–90

    Google Scholar 

  • HarrisR & KnowlesCJ (1983) Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J. Gen. Microbiol. 129: 1005–1011

    Google Scholar 

  • HarrisRE, BunchAW & KnowlesCJ (1987) Microbial cyanide and nitrile metabolism. Sci. Prog. (Oxford) 71: 293–304

    Google Scholar 

  • HarrisRE & KnowlesCJ (1983) The conversion of cyanide to ammonia by extracts of a strain of Pseudomonas fluorescens that utilizes cyanide as a source of nitrogen for growth. FEMS Microbiol. Lett. 20: 337–341

    Google Scholar 

  • HendricksonHR & ConnEE (1969) Cyanide metabolism in higher plants IV. Purification and properties of the β-cyanoalanine synthase of blue lupine. J. Biol. Chem. 244: 2632–2640

    Google Scholar 

  • HolWGJ, LijkLJ & KalkKH (1983) The high resolution three-dimensional structure of bovine liver rhodanese. Fundam. Appl. Toxicol. 3: 370–376

    Google Scholar 

  • HopeKM & KnowlesCJ (1991) The anerobic utilisation of cyanide in the presence of sugars by microbial cultures can involve an abiotic process. FEMS Microbiol. Lett. 80: 217–220

    Google Scholar 

  • HoweR (1965) Bio-destruction of cyanide wastes-advantages and disadvantages. Int. J. Air Water Pollut. 9: 468–478

    Google Scholar 

  • IkegamiF, TakayamaK & MurakoshioI (1988a) Purification and properties of β-cyano-L-alanine synthase from Lathyrus latifolius. Phytochemistry 27: 3385–3389

    Google Scholar 

  • IkegamiF, TakayamaK, TajimaC & MurakoshiI (1988b) Purification and properties of β-cyano-L-alanine synthase from Spinacia oleracea. Phytochemistry 27: 2011–2016

    Google Scholar 

  • Ingvorsen K & Godtfredsen SE (1988) Microbial cyanide converting enzymes, their production and use. European Patent Application EP 282351

  • IngvorsenK, Hojer-PedersenB & GodtfredsenSE (1991) Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 57: 1783–1789

    Google Scholar 

  • IngvorsenK, YdeB, GodtfredsenS & TsuchiyaR (1988) Microbial hydrolysis of organic nitriles and amides. In: EveredD & HarnettS (Eds) Cyanide Compounds in Biology (pp 16–31). John Wiley & Sons, New York

    Google Scholar 

  • JaegerK & DotterweichE (1986) Reduction of cyanides by the nitrogenase-systems of free-living diazotrophic bacteria in the sediment of river Alster (Hamburg). Arch. Hydrobiol. 107: 249–259

    Google Scholar 

  • JarabakR (1981) 3-Mercaptopyruvate sulfurtransferase. Meths. Enzymol. 77: 291–297

    Google Scholar 

  • KlenkH, GriffithsA, HuthmacherK, ItzelH, KnorreH, VoigtC & WeibergO (1988) Cyano compounds, inorganic. In: GerhartzW (Ed) Ullman's Encyclopedia of Industrial Chemistry (pp 159–190). VCH Publishers, New York

    Google Scholar 

  • KnowlesCJ (1976) Microorganisms and cyanide. Bacteriol. Rev. 40: 652–680

    Google Scholar 

  • KnowlesCJ (1988) Cyanide utilization and degradation by microorganisms. In: EveredD & HarnettS (Eds) Cyanide Compounds in Biology (pp 3–15). John Wiley & Sons, Ltd, Chichester, UK

    Google Scholar 

  • KunzDA & NagappanO (1989) Cyanase-mediated utilization of cyanate in Pseudomonas flourescens NCIMB 11764. Appl. Environ. Microbiol. 55: 256–258

    Google Scholar 

  • LauingerC & ResslerC (1970) β-Cyanoalanine as a substrate for asparaginase, stoichiometry, kinetics and inhibition. Biochim. Biophys. Acta. 198: 316–323

    Google Scholar 

  • LiJ, BurgessBK & CorbinJL (1982) Nitrogenase reactivity: cyanide as substrate and inhibitor. Biochemistry 21: 4393–4402

    Google Scholar 

  • LoweDJ, FisherK, ThorneleyRNF, VaughnSA & BurgessBK (1989) Kinetics and mechanism of cyanide with molybdenum nitrogenase from Azotobacter vinelandii. Biochemistry 28: 8460–8466

    Google Scholar 

  • MacadamAN & KnowlesCJ (1984) Purification and properties of β-cyano-L-alanine synthase from the cyanide-producing bacterium, Chromobacterium violaceum. Biochim. Biophys. Acta. 786: 123–132

    Google Scholar 

  • MeyersPR, GokoolP, RawlingsDE & WoodsDR (1991) An effecient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137: 1397–1400

    Google Scholar 

  • MilesEW (1986) Pyridoxal phosphate enzymes catalyzing β-elimination and β-replacement reactions. In: DolphinD, PoulsonR & VramovicOA (Eds) Vitamin B6 Pyridoxal Phosphate Chemical, Biochemical, and Medical Aspects, Part B (pp 253–310). John Wiley & Sons, New York

    Google Scholar 

  • MilitzerW (1949) The addition of cyanide to sugars. Arch. Biochem. 21: 143–148

    Google Scholar 

  • MintelR & WestleyJ (1966) The rhodanese reaction: mechanism of sulfur-sulfur bond cleavage. J. Biol. Chem. 241: 3381–3385

    Google Scholar 

  • MorenoSNJ, StolzeK, JanzenEG & MasonRP (1988) Oxidation of cyanide to the cyanyl radical by peroxidase/H2O2 systems as determined by spin trapping. Arch. Biochem. Biophys. 265: 267–271

    Google Scholar 

  • Mudder T & Whitlock J (1984) Strain of Pseudomonas paucimobilis. US Patent 4,461,834

  • NazlyH, KnowlesCJ, BeardsmoreAJ, NaylorWT & CorcoranEG (1983) Detoxification of cyanide by immobilised fungi. J. Chem. Tech. Biotechnol. 33B: 119–126

    Google Scholar 

  • NazlyN & KnowlesC (1981) Cyanide degradation by immobilized fungi. Biotechnol. Lett. 3: 363–368

    Google Scholar 

  • Orme-JohnsonW (1985) Molecular basis of biological nitrogen fixation. Ann. Rev. Biophys. Chem. 14: 419–459

    Google Scholar 

  • PaganiS, FranchiE, ColnaghiR & KennedyC (1991) Identification of sulfurtransferase enzymes in Azotobacter vinelandii. FEBS Lett. 278: 151–154

    Google Scholar 

  • PainterG & WareH (1955) Bacterial utilization of cyanide. Nature (London) 175: 900

    Google Scholar 

  • PalmerSAK, BretonMA, NunnoTJ, SullivanDM & SurprenantNF (1988) Metal/Cyanide Containing Wastes: Treatment Technologies. Noyes Data Corp, Park Ridge, NJ

    Google Scholar 

  • ParuchuriYL, ShivaramanN & KumaranP (1990) Microbial transformation of thiocyanate. Environ. Pollut. 68: 15–28

    CAS  PubMed  Google Scholar 

  • ResslerC, AbeO, KondoY, CottrellB & AbeK (1973) Purification and characterization from Chromobacterium violaceum of an enzyme catalyzing the synthesis of γ-cyano-α-aminobutyric acid and thiocyanate, Biochemistry. 12: 5369–5377

    Google Scholar 

  • Richardson KR (1987) Production of cyanide hydratase. European Patent Application EP 233719

  • Richardson KR & Clarke PM (1987) Production of cyanide hydratase. European Patent Application EP 234760

  • RodgersPB (1981) Cyanide degradation by Chromobacterium violaceum. In: VenneslandB, ConnEE, KnowlesCJ, WestleyJ & WissingF (Eds) Cyanide in Biology (pp 301–310). Academic Press, New York

    Google Scholar 

  • RodgersPB & KnowlesCJ (1978) Cyanide production and degradation during growth of Chromobacterium violaceum. J. Gen. Microbiol. 108: 261–267

    Google Scholar 

  • RollinsonG, JonesR, MeadowsMP, HarrisRE & KnowlesCJ (1987) The growth of a cyanide-utilizing strain of Pseudomonas fluorescens in liquid culture on nickel cyanide as a source of nitrogen. FEMS Microbiol. Lett. 40: 199–205

    Google Scholar 

  • SerianniAS, NunezHA & BarkerR (1980) Cyanohydrin synthesis: studies with [13C] cyanide. J. Org. Chem. 45: 3329–3341

    Google Scholar 

  • ShahMM, GroverTA & AustSD (1991) Metabolism of cyanide by Phanerochaete chrysosprium. Arch. Biochem. Biophys. 290: 173–178

    Google Scholar 

  • Silva-AvalosJ, RichmondMG, NagappanO & KunzDA (1990) Degradation of the metal-cyano complex tetracyanonickelate (II) by cyanide-utilizing bacterial isolates. Appl. Environ. Microbiol. 56: 3664–3670

    Google Scholar 

  • SolomonsonLP (1981) Cyanide as a metabolic inhibitor. In: VenneslandB, ConnEE, KnowlesCJ, WestleyJ & WissingF (Eds) Cyanide in Biology (pp 11–28). Academic Press, New York

    Google Scholar 

  • StamH, StouthamerAH & vanVerseveldHW (1985) Cyanide assimilation in Rhizobium ORS 571: influence of the nitrogenase catalyzed hydrogen production on the efficiency of growth. Arch. Microbiol. 143: 196–202

    Google Scholar 

  • StolzeK, MorenoS & MasonR (1989) Free radical intermediates formed during the oxidation of cyanide by horseradish peroxidase/H2O2 as detected with nitroso spin traps. J. Inorg. Biochem. 37: 45–53

    Google Scholar 

  • TsaiM, WeaverJ, FlossHG, ConnEE, CrevelingRK & MazelisM (1978) Stereochemistry of the β-cyanoalanine synthetase and S-alkylcysteine lyase reactions. Arch. Biochem. Biophys. 190: 553–559

    Google Scholar 

  • VachekH & WoodJL (1972) Purification and properties of mercaptopyruvate sulfur transferase of Eschericia coli. Biochim. Biophys. Acta. 258: 133–146

    Google Scholar 

  • VarmaR & FrenchD (1972) Mechanism of the cyanohydrin (Kiliani-Fischer) synthesis. Carbohydr. Res. 25: 71–79

    Google Scholar 

  • VenneslandB, ConnEE, KnowlesCJ & WestleyJ (1981) Cyanide in Biology. Academic Press, New York

    Google Scholar 

  • WayJL (1983) Mechanism of cyanide intoxication and its antagonism: introduction. Fundam. Appl. Toxicol. 3: 369

    Google Scholar 

  • WestleyJ (1977) Sulfane-transfer catalysis by enzymes. In: vanTamelenEE (Ed) Bioorganic Chemistry (pp 371–390). Academic Press, New York

    Google Scholar 

  • WestleyJ (1981) Cyanide and sulfane sulfur. In: VenneslandB, ConnEE, KnowlesCJ, WestleyJ & WissingF (Eds) Cyanide in Biology (pp 61–76). Academic Press, New York

    Google Scholar 

  • WestleyJ (1988) Mammalian cyanide detoxification with sulphane sulfur. In: EveredD & HarnettS (Eds) Cyanide Compounds in Biology (pp 201–218). John Wiley & Sons, Ltd, Chichester, UK

    Google Scholar 

  • WestleyJ, AdlerH, WestleyL & NishidaC (1983) The sulfurtransferases. Fundam. Appl. Toxicol. 3: 377–382

    Google Scholar 

  • WhiteJM, JonesDD, HuangD & GauthierJJ (1988) Conversion of cyanide to formate and ammonia by a pseudomonad obtained from industrial wastewater. J. Indus. Microbiol. 3: 263–272

    Google Scholar 

  • WoodJL (1975) Biochemistry. In: NewmanAA (Ed) Chemistry and Biochemistry of Thiocyanic Acid and its Derivatives (pp 156–221). Academic Press, New York

    Google Scholar 

  • WyattJ & LintonE (1988) The industrial potential of microbial nitrile biochemistry. In: EveredD & HarnettS (Ed) Cyanide Compounds in Biology (pp 32–48). John Wiley & Sons, New York

    Google Scholar 

  • YamadaH & NagasawaT (1990) Production of useful amides by enzymatic hydration of nitriles. Ann. NY Acad. Sci. 613: 142–154

    Google Scholar 

  • YanaseH, SakaiT & TonomuraK (1983) Purification, crystallization and some properties of β-cyano-L-alanine degrading enzyme in Pseudomonas sp. 13. Agric. Biol. Chem. 47: 473–482

    Google Scholar 

  • YouattJ (1954) Studies on the metabolism of Thiobacillus thiocyanoxidans. J. Gen. Microbiol. 11: 139–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raybuck, S.A. Microbes and microbial enzymes for cyanide degradation. Biodegradation 3, 3–18 (1992). https://doi.org/10.1007/BF00189632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189632

Key words

Navigation