Skip to main content

Role of Microbes in Bioremediation of Radioactive Waste

  • Chapter
  • First Online:
Microbial Rejuvenation of Polluted Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 25))

Abstract

Intense release of radionuclides into the environment and their mobility prompted public and research concerned in recent years about the processing of radionuclides. Numerous cases of soil and groundwater are getting contaminated with various radioactive wastes. Currently available technologies are quite cost-effective and technical limitation increased the cost high. Bioremediation, where microorganisms (bacteria, algae, fungi) plays a major role in harnessing the biogeochemical cycles of radioactive wastes. In this chapter, we exclusively discuss the role of microbes in decontaminating process of various hazardous radioactive wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation-a review. Open J Environ Biol 2(1):30–46

    Google Scholar 

  • Abdel Rahman RO, Elmesawy M, Ashour I, Hung YT (2013) Remediation of NORM and TENORM contaminated sites – review article. Environ Prog Sustain Energy 33(2):588–596

    Google Scholar 

  • Achal V, Pan X, Zhang D (2012) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89(6):764–768

    Article  CAS  PubMed  Google Scholar 

  • Alami NH (2014) The influence of microbial consortium in bioremediation process using bioreactor. IPTEK J Sci 1(1):1–4

    Article  Google Scholar 

  • Albrecht-Schmitt TE (2019) Actinide chemistry at the extreme. Inorg Chem 58:1721–1723

    Google Scholar 

  • Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72(12):7873–7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Baeza A, Hernández S, Guillén FJ, Moreno G, Manjon JL, Pascual R (2004) Radiocaesium and natural gamma emitters in mushrooms collected in Spain. Sci Total Environ 318(1–3):59–71

    Google Scholar 

  • Baeza A, Guillén J (2006) Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Appl Radiat Isot 64(9):1020–1026

    Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2018) Micro-remediation of metals: a new frontier in bioremediation. In: Handbook of environmental materials management. Springer, Cham

    Google Scholar 

  • Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41(16):5701–5707

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Boukhalfa H, Icopini GA, Reilly SD, Neu MP (2007) Plutonium (IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl Environ Microbiol 73(18):5897–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandao-Mello CE, Farina R, Rodrigues de Oliveira A, Curado MP, Santos QCB (2000) Medical follow-up of the radiation accident with 137 Cs in Goiania-an update (1990-1994)

    Google Scholar 

  • Bryant PA (2019) Radiation physics and the structure of matter. Airborne radioactive discharges and human health effects, pp 1–16. https://doi.org/10.1088/2053-2563/aafa6dch1

  • Butler JE, Glaven RH, Esteve-Núñez A, Núnez C, Shelobolina ES, Bond DR, Lovley DR (2006) Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens. J Bacteriol 188(2):450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, Sousa PAR, de Melo DFO, Coelho NMM (2015) Bioremediation of polluted waters using microorganisms. https://doi.org/10.5772/60770

  • Coeytaux K, Bey E, Christensen D, Glassman ES, Murdock B, Doucet C (2015) Reported radiation overexposure accidents worldwide, 1980-2013: a systematic review. PLoS One 10(3):e0118709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding C, Cheng W, Nie X (2019) Microorganisms and radionuclides. In: Interface science and technology, vol 29. Elsevier, Amsterdam, pp 107–139

    Google Scholar 

  • Earis P (2009) Cold and ultracold molecules: Durham University, UK, 15–17 April 2009, vol 142. Royal Society of Chemistry

    Google Scholar 

  • Erlanger S (1992) Medical care in Russia seems near a collapse. New York Times, pp 1–6

    Google Scholar 

  • El Mamouni R, Jacquet R, Gerin P, Agathos SN (2002) Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene and nickel: laboratory-and pilot-scale study. Water Sci Technol 45(10):49–54

    Article  PubMed  Google Scholar 

  • Espinoza-Sánchez MA, Arévalo-Niño K, Quintero-Zapata I, Castro-González I, Almaguer-Cantú V (2019) Cr (VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. J Environ Manag 251:109595

    Article  CAS  Google Scholar 

  • Fontenelle FR, Taniguchi S, da Silva J, Lourenço RA (2019) Environmental quality survey of an industrialized estuary and an Atlantic Forest Biosphere Reserve through a comparative appraisal of organic pollutants. Environ Pollut 248:339–348

    Article  CAS  PubMed  Google Scholar 

  • Francis AJ (2006) Microbial transformations of radionuclides and environmental restoration through bioremediation. Citeseer

    Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly M (2000) Reduction of fe (III), cr (VI), U (VI), and tc (VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66(5):2006–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Shu-mei WL, Kostandarithes HM, Brockman FJ (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington state. Appl Environ Microbiol 70(7):4230–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrieli J, Cozzi G, Vallelonga P, Schwikowski M, Sigl M, Eickenberg J, Cescon P (2011) Contamination of Alpine snow and ice at Colle Gnifetti, Swiss/Italian Alps, from nuclear weapons tests. Atmos Environ 45(3):587–593

    Article  CAS  Google Scholar 

  • Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28(5–6):471–482

    Article  CAS  Google Scholar 

  • Gogada R, Singh SS, Lunavat SK, Pamarthi MM, Rodrigue A, Vadivelu B, Apte SK (2015) Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol 99(21):9203–9213

    Article  CAS  PubMed  Google Scholar 

  • Hildén K, Mäkelä MR (2018) Role of fungi in wood decay. In: Reference module in life sciences. Elsevier, Amsterdam

    Google Scholar 

  • Humphries AC, Macaskie LE (2002) Reduction of Cr (VI) by Desulfovibrio vulgaris and Microbacterium sp. Biotechnol Lett 24(15):1261–1267

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency (2010) Estimation of global inventories of radioactive waste and other radioactive materials. Accessed from https://www.iaea.org/publications/7857/estimation-of-global-inventories-of-radioactive-waste-and-other-radioactive-materials

  • Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, White DC (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38(2):468–475

    Article  CAS  PubMed  Google Scholar 

  • Ite AE, Ibok UJ (2019) Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. Int J 7(1):1–19

    CAS  Google Scholar 

  • Iwamoto K, Minoda A (2018) Bioremediation of biophilic radionuclides by algae. https://doi.org/10.5772/intechopen.81492

  • Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Young MH, Hardee K (2008) Population, urbanization and the environment. World Watch 21(5):34–39

    Google Scholar 

  • Jiang L, Liu X, Yin H, Liang Y, Liu H, Miao B, Yang J (2019) The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: a mini review. Ecotoxicol Environ Saf 191:110009

    Article  PubMed  CAS  Google Scholar 

  • Katarína D, Slavomíra M, Hana D, Katarína L, Hana H (2018) The adaptation mechanisms of bacteria applied in bioremediation of hydrophobic toxic environmental pollutants: how indigenous and introduced bacteria can respond to persistent organic pollutants-induced stress? In: Persistent organic pollutants. IntechOpen, London

    Google Scholar 

  • Khan S, Syed AT, Ahmad R, Rather TA, Ajaz M, Jan FA (2010) Radioactive waste management in a hospital. Int J Health Sci 4(1):39

    Google Scholar 

  • Khan I, Ali M, Aftab M, Shakir S, Qayyum S, Haleem KS, Tauseef I (2019) Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ Monit Assess 191(10):622

    Article  PubMed  CAS  Google Scholar 

  • Knopp R, Panak PJ, Wray LA, Renninger NS, Keasling JD, Nitsche H (2003) Laser spectroscopic studies of interactions of UVI with bacterial phosphate species. Chem Eur J 9(12):2812–2818

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2007) Bioremediation of radionuclides: emerging technologies. Omics 11(3):295–304

    Article  CAS  PubMed  Google Scholar 

  • Kyne D, Bolin B (2016) Emerging environmental justice issues in nuclear power and radioactive contamination. Int J Environ Res Public Health 13(7):700

    Article  PubMed Central  CAS  Google Scholar 

  • Lee WE, Ojovan MI, Jantzen CM (2013) Radioactive waste management and contaminated site clean-up: processes, technologies and international experience. Elsevier, Amsterdam

    Book  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27(2–3):411–425

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide–microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16(3):254–260

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Ridley J, Khizniak T, Lyalikova NN, Macaskie LE (1999) Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol 65(6):2691–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (2000) Biological reduction and removal of Np(V) by two microorganisms. Environ Sci Technol 34(7):1297–1301. https://doi.org/10.1021/es990394y

    Article  CAS  Google Scholar 

  • Lopez-Fernandez M, Moll H, Merroun ML (2019) Reversible pH-dependent curium (III) biosorption by the bentonite yeast isolate Rhodotorula mucilaginosa BII-R8. J Hazard Mater 370:156–163

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60(2):726–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips EJ (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59(11):3572–3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukšienė B, Druteikienė R, Pečiulytė D, Baltrūnas D, Remeikis V, Paškevičius A (2012) Effect of microorganisms on the plutonium oxidation states. Appl Radiat Isot 70(3):442–449

    Article  PubMed  CAS  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146(8):1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Marra JE, Palmer RA (2011) Radioactive waste management. Waste 101–108. Elsevier

    Google Scholar 

  • Marshall MJ, Dohnalkova AC, Kennedy DW, Plymale AE, Thomas SH, Löffler FE, Beliaev AS (2009) Electron donor-dependent radionuclide reduction and nanoparticle formation by Anaeromyxobacter dehalogenans strain 2CP-C. Environ Microbiol 11(2):534–543

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin TP, Monahan SP, Pruvost NL, Frolov VV, Ryazanov BG, Sviridov VI (2000) A review of criticality accidents 2000 revision. Los Alamos National Lab, Los Alamos

    Book  Google Scholar 

  • Misra CS, Appukuttan D, Kantamreddi VSS, Rao AS, Apte SK (2012) Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioengineered 3(1):44–48

    Article  Google Scholar 

  • Mondani L, Benzerara K, Carrière M, Christen R, Mamindy-Pajany Y, Février L, Berthomieu C (2011) Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls. PLoS One 6(10):e25771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mould RF (2000) Chernobyl record: the definitive history of the chernobyl catastrophe. CRC Press, Boca Raton

    Book  Google Scholar 

  • Nazaroff WW (1992) Radon transport from soil to air. Rev Geophys 30(2):137–160

    Article  Google Scholar 

  • Nenot J-C (2009) Radiation accidents over the last 60 years. J Radiol Prot 29(3):301

    Article  CAS  PubMed  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Ojovan MI, Lee WE, Kalmykov SN (2019) An introduction to nuclear waste immobilisation. Elsevier, Amsterdam

    Google Scholar 

  • Oyewole OA, Zobeashia SSL-T, Oladoja EO, Raji RO, Odiniya EE, Musa AM (2019) Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil. SN Appl Sci 1(8):857

    Article  CAS  Google Scholar 

  • Pacheco-Torgal F (2012) Indoor radon: an overview on a perennial problem. Build Environ 58:270–277

    Article  Google Scholar 

  • Pandey RK, Tewari S, Tewari L (2018) Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicol Environ Saf 158:50–58

    Article  CAS  PubMed  Google Scholar 

  • Payne RB, Gentry DM, Rapp-Giles BJ, Casalot L, Wall JD (2002) Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl Environ Microbiol 68(6):3129–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peplow M (2014) Nuclear energy: meltdowns, redux. Nature 506(7488):292

    Article  CAS  Google Scholar 

  • Prakash D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6(4):349–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Penalonga L, Moratilla Soria BY (2017) A review of the nuclear fuel cycle strategies and the spent nuclear fuel management technologies. Energies 10(8):1235

    Article  CAS  Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption processes for heavy metal removal. In: Environmental microbe-metal interactions. American Society of Microbiology, Washington, DC, pp 329–362

    Google Scholar 

  • Sherman S (2015) Radioactive waste dangers. Accessed from http://large.stanford.edu/courses/2015/ph240/sherman2/

  • Shimura H, Itoh K, Sugiyama A, Ichijo S, Ichijo M, Furuya F, Yukawa Y (2012) Absorption of radionuclides from the Fukushima nuclear accident by a novel algal strain. PLoS One 7(9):e44200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla A, Parmar P, Saraf M (2017) Radiation, radionuclides and bacteria: an in-perspective review. J Environ Radioact 180:27–35

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar V (2020) Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study. Environ Sci Pollut Res 27:27181–27201

    Article  CAS  Google Scholar 

  • Smičiklas I, Šljivić-Ivanović M (2016) Radioactive contamination of the soil: assessments of pollutants mobility with implication to remediation strategies. In: Soil contamination–current consequences and further solutions. InTech, London, pp 253–276

    Google Scholar 

  • Srivastava J, Naraian R, Kalra SJS, Chandra H (2014) Advances in microbial bioremediation and the factors influencing the process. Int J Environ Sci Technol 11(6):1787–1800

    Article  CAS  Google Scholar 

  • Steinhauser G, Brandl A, Johnson TE (2014) Erratum to “comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts” [Sci Total Environ 470-471 (2014) 800-817]. Sci Total Environ 487:575

    Article  CAS  Google Scholar 

  • Tazoe H, Hosoda M, Sorimachi A, Nakata A, Yoshida MA, Tokonami S, Yamada M (2012) Radioactive pollution from Fukushima Daiichi nuclear power plant in the terrestrial environment. Radiat Prot Dosim 152(1–3):198–203

    Article  CAS  Google Scholar 

  • Thomas RAP, Macaskie LE (1996) Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution. Environ Sci Technol 30(7):2371–2375

    Article  CAS  Google Scholar 

  • Tkavc R, Matrosova VY, Grichenko OE, Gostinčar C, Volpe RP, Klimenkova P, Lyman MG (2018) Prospects for fungal bioremediation of acidic radioactive waste sites: characterization and genome sequence of Rhodotorula taiwanensis MD1149. Front Microbiol 8:2528

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth FL (2008) Prospects for nuclear power in the 21st century: a world tour. Int J Global Energy Issues 30(1–4):3–27

    Article  Google Scholar 

  • Turner M, Rudin M, Cizdziel J, Hodge V (2003) Excess plutonium in soil near the Nevada test site, USA. Environ Pollut 125(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Uzair B, Shaukat A, Fasim F, Maqbool S (2019) Conjugate magnetic nanoparticles and microbial remediation, a genuine technology to remediate radioactive waste. In: Soil microenvironment for Bioremediation and Polymer Production. Scrivener Publishing, Beverly, pp 197–211

    Chapter  Google Scholar 

  • Valdovinos HF, Graves S, Ellison P, Barnhart T, Nickles RJ (2017) Earth, air, fire and water: a targetry quartet. In: AIP conference proceedings, vol. 1845, no. 1, p 020022. AIP Publishing LLC

    Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegradation 120:71–83

    Article  CAS  Google Scholar 

  • Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U (VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409(2):384–395

    Article  CAS  PubMed  Google Scholar 

  • Watanabe ME (2001) Can bioremediation bounce back? Nat Biotechnol 19(12):1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen X, Zhou J, Luo X (2020) Uranium biosorption mechanism model of protonated Saccharomyces cerevisiae. J Hazard Mater 385:121588

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vandana, U.K., Gulzar, A.B.M., Laskar, I.H., Meitei, L.R., Mazumder, P.B. (2021). Role of Microbes in Bioremediation of Radioactive Waste. In: Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-15-7447-4_13

Download citation

Publish with us

Policies and ethics