Skip to main content

An Introduction to Algal Biofuels

  • Chapter
  • First Online:
Microbial Strategies for Techno-economic Biofuel Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Desires of living a higher standard of life bring regular consumption of non-renewable energy resources. This conventional fuel consumption causes emission of CO2, particulate matter, and greenhouse gases to the atmosphere; in such conditions, energy crisis brings ignited focus on algaculture for producing biodiesel and other liquid biofuels. Algal oil or algal biofuels are third-generation biofuels, emerged as a renewable alternative to conventional liquid fuels. These algal oils are also a replacement for conventional biofuels, which are obtained from agricultural sources like corn, sugarcane, oilseed plants, and some animal fats. Unlike oilseed crops, they do not need vast farmland and hence keep agrarian lands available for food crops. Algaculture is possible in freshwater, saline water, and wastewater from various sources with minimal impact. Algaculture has a significant effect on environmental pollution as it assimilates nitrate and phosphate present in wastewater while continuously contributing to CO2 sequestration. Algal oils are biodegradable and comparatively less harmful to the surrounding if spilled. Open outdoor cultures are used for algae cultivation for their low cost, but generally, they are profoundly affected by environmental disturbances like light availability and temperature swings. Ongoing research in algal biofuels is focused on the rapid growth of biomass, high lipid production, and thermal tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ASTM:

American Society for Testing and Materials

ATP:

Adenosine triphosphate

C:

Carbon

Ca:

Calcium

CNRL:

Canadian Natural Resources Limited

CO2:

Carbon dioxide

Cu:

Copper

DNA:

Deoxyribonucleic acid

Fe:

Iron

GHG:

Greenhouse gas

HAMGM:

Highly assimilable minimal growth medium

HDRD:

Hydrogen-derived renewable diesel

K:

Potassium

K2CO3:

Potassium carbonate

Mg:

Magnesium

Mn:

Manganese

Mtoe:

Million tons of oil equivalent

N:

Nitrogen

NOX:

Nitrogen oxides

P:

Phosphorus

PBR:

Photobioreactor

S:

Sulfur

TAGs:

Triacylglycerides

TPES:

Total primary energy supply

Zn:

Zinc

References

  • Abate C, Callieri D, Rodríguez E, Garro O (1996) Ethanol production by a mixed culture of flocculent strains of Zymomonas mobilis and Saccharomyces sp. Appl Microbiol Biotechnol 45(5):580–583

    CAS  PubMed  Google Scholar 

  • Abdeshahian P, Dashti MG, Kalil MS, Yusoff WMW (2010) Production of biofuel using biomass as a sustainable biological resource. Biotechnology 9(3):274–282

    CAS  Google Scholar 

  • Algenol (2014) About algenol | algenol biofuels. www.algenol.com. Accessed 19 Aug 2014

  • Alketife AM, Judd S, Znad H (2017) Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environ Technol 38(1):94–102

    CAS  PubMed  Google Scholar 

  • Barclay WR, Martek Biosciences Corp (2005) Mixtures of omega-3 and omega-6 highly unsaturated fatty acids from euryhaline microorganisms. U.S. Patent 6,977,167

    Google Scholar 

  • Behrens PW, Thompson JM, Apt K, Pfeifer III JW, Wynn JP, Lippmeier JC et al (2007) U.S. Patent No. 7,163,811. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) Retracted: a process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 35(9):951–969

    CAS  Google Scholar 

  • Birol F (2017) Key world energy statistics. International Energy Agency

    Google Scholar 

  • Blackshaw R, Johnson E, Gan Y, May W, McAndrew D, Barthet V, McDonald T, Wispinski D (2011) Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can J Plant Sci 91(5):889–896

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. In: Progress in industrial microbiology, vol 35. Elsevier, Amsterdam, pp 313–321

    Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Algal culturing techniques. Academic Press, New York, pp 205–218

    Google Scholar 

  • Bracht C (2011) G20 climate change and energy accountability: the G20’ Summit’s compliance record, 2008 to 2011. G20 Research Group, December

    Google Scholar 

  • Cabanelas ITD, Ruiz J, Arbib Z, Chinalia FA, Garrido-Pérez C, Rogalla F, Nascimento IA, Perales JA (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436

    CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    CAS  Google Scholar 

  • Canela APR, Rosa PT, Marques MO, Meireles MAA (2002) Supercritical fluid extraction of fatty acids and carotenoids from the microalgae Spirulina maxima. Ind Eng Chem Res 41(12):3012–3018

    CAS  Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    CAS  PubMed  Google Scholar 

  • Castellanos CS (2013) Batch and continuous studies of Chlorella vulgaris in photo-bioreactors. Doctoral dissertation, School of Graduate and Postdoctoral Studies, University of Western Ontario

    Google Scholar 

  • Chandel AK, Bhatia L, Garlapati VK, Roy L, Arora A (2017) Biofuel policy in Indian perspective: socioeconomic indicators and sustainable rural development. In: Sustainable biofuels development in India. Springer, Cham, pp 459–488

    Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14(11):421–426

    CAS  Google Scholar 

  • Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    CAS  PubMed  Google Scholar 

  • Cho S, Lee N, Park S, Yu J, Luong TT, Oh YK, Lee T (2013) Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour Technol 131:515–520

    CAS  PubMed  Google Scholar 

  • Choi YK, Kim HJ, Kumaran RS, Song HJ, Song KG, Kim KJ, Lee SH, Yang YH, Kim HJ (2017) Enhanced growth and total fatty acid production of microalgae under various lighting conditions induced by flashing light. Eng Life Sci 17(9):976–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu FF, Shen XF, Lam PK, Zeng RJ (2014) Optimization of CO2 concentration and light intensity for biodiesel production by Chlorella vulgaris FACHB-1072 under nitrogen deficiency with phosphorus luxury uptake. J Appl Phycol 26(4):1631–1638

    CAS  Google Scholar 

  • Cleveland CJ, Kaufmann RK, Stern DI (2000) Aggregation and the role of energy in the economy. Ecol Econ 32(2):301–317

    Google Scholar 

  • Coons JE, Kalb DM, Dale T, Marrone BL (2014) Getting to low-cost algal biofuels: a monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Res 6:250–270

    Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15(5):898–902

    CAS  PubMed  Google Scholar 

  • Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products–species of high potential. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Wiley, New York, p 281

    Google Scholar 

  • Dauta A, Devaux J, Piquemal F, Boumnich L (1990) Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207(1):221–226

    Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174

    CAS  PubMed  Google Scholar 

  • Deng Q, Alvarado R, Toledo E, Caraguay L (2020) Greenhouse gas emissions, non-renewable energy consumption, and output in South America: the role of the productive structure. Environ Sci Pollut Res 27(6):1–15

    Google Scholar 

  • Directive EC (2003) 30/EC of the European Parliament and of the Council on the promotion of the use of biofuels or other renewable fuels for transport (2003) L 123/42. Official Journal of the European Union, Brussels

    Google Scholar 

  • Du Y, Schuur B, Kersten SR, Brilman DW (2015) Opportunities for switchable solvents for lipid extraction from wet algal biomass: an energy evaluation. Algal Res 11:271–283

    Google Scholar 

  • Duran SK (2020) Production and properties estimation of algal biodiesel. J Automobile Eng Appl 7(1)

    Google Scholar 

  • Energy (2015) Algenol announces commercial algal ethanol fuel partnership. www.energy.gov

  • Environmental Protection Agency: Wastewater treatment by pulsed electric field processing. Accessed 20 Jan 2013

    Google Scholar 

  • Eppink MH, Olivieri G, Reith H, van den Berg C, Barbosa MJ, Wijffels RH (2017) From current algae products to future biorefinery practices: a review. In: Biorefineries. Springer, Cham, pp 99–123

    Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feed-stock alga Spirogyra species. Int J Eng Sci Technol 3(2):1749–1755

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    CAS  PubMed  Google Scholar 

  • Gao Y, Gregor C, Liang Y, Tang D, Tweed C (2012) Algae biodiesel—a feasibility report. Chem Central J 6(1):S1

    CAS  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335

    CAS  PubMed  Google Scholar 

  • Gerardo ML, Zanain MA, Lovitt RW (2015) Pilot-scale cross-flow microfiltration of Chlorella minutissima: a theoretical assessment of the operational parameters on energy consumption. Chem Eng J 280:505–513

    CAS  Google Scholar 

  • Gibbs L, Anderson B, Barnes K, Engeler G, Freel J, Horn J, Ingham M, Kohler D, Lesnini D, MacArthur R, Mortier M (2009) Motor gasolines technical review. Chevron Products Company, San Ramon, CA

    Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sust Energ Rev 14(2):842–848

    CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Google Scholar 

  • Gross M (2008) Algal biofuel hopes. Curr Biol 18(2):R46–R47

    CAS  Google Scholar 

  • Grudzinski W, Krzeminska I, Luchowski R, Nosalewicz A, Gruszecki WI (2016) Strong-light-induced yellowing of green microalgae Chlorella: a study on molecular mechanisms of the acclimation response. Algal Res 16:245–254

    Google Scholar 

  • Günerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33(2):243–260

    PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186

    CAS  PubMed  Google Scholar 

  • Haines-Young R, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Ecosystem ecology: a new synthesis, vol 1. Cambridge University Press, Cambridge, pp 110–139

    Google Scholar 

  • Hall CA (2016) Energy return on investment: a unifying principle for biology, economics, and sustainability, vol 36. Springer, Cham

    Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    CAS  Google Scholar 

  • Herndon A (20 March 2013) Tesoro is first customer for Sapphire’s algae-derived crude oil. Bloomberg

    Google Scholar 

  • Home (2014) Inauguration of micro algae lab to produce and process nutraceutical, cosmeceutical, food and bio fuel in QMAB Co. www.qmabco.com. Accessed 17 Dec 2014

  • Home-Proviron (2019) Achieving major breakthrough in chaetoprime production. www.proviron.be. Accessed 7 Feb 2019

  • Horn SJ, Aasen IM, Østgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25(5):249–254

    CAS  Google Scholar 

  • Hossain AS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    CAS  Google Scholar 

  • IEA (2016) Key world energy statistics

    Google Scholar 

  • Ilavarasi A, Mubarakali D, Praveenkumar R, Baldev E, Thajuddin N (2011) Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology 10(6):540–545

    CAS  Google Scholar 

  • Jiménez-Llanos J, Ramírez-Carmona M, Rendón-Castrillón L, Ocampo-López C (2020) Sustainable biohydrogen production by Chlorella sp. microalgae: a review. Int J Hydrogen Energy 45(15):8310–8328

    Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23(10):5179–5183

    CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9):4607–4638

    Google Scholar 

  • Kanel JS, Guelcher SA, Eastman Chemical Co (1999) Method for rupturing microalgae cells. US Patent 6,000,551

    Google Scholar 

  • Kaplan D, Richmond AE, Dubinsky Z, Aaronson S (1986) CRC handbook of microalgal mass culture. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kempkes MA (2016) Pulsed electric fields for algal extraction and predator control. Handbook of electroporation, 1–16. Diversified Technology Inc. Accessed 21 Oct 2016

    Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83(10):823–833

    CAS  Google Scholar 

  • Lam MK, Khoo CG, Lee KT (2019) Scale-up and commercialization of algal cultivation and biofuels production. In: Biofuels from algae. Elsevier, pp 475–506

    Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008a) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    CAS  PubMed  Google Scholar 

  • Li Q, Du W, Liu D (2008b) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008c) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    CAS  PubMed  Google Scholar 

  • Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. Journal of Biomedicine and Biotechnology 2011(1–8):4

    Google Scholar 

  • Liu J, Song Y, Liu Y, Ruan R (2015) Optimization of growth conditions toward two-stage cultivation for lipid production of chlorella vulgaris. Environ Prog Sustain Energy 34(6):1801–1807

    CAS  Google Scholar 

  • Lu BL, Li MX, Qi L (2013) The effect of light on the growth and product accumulation of chlorella. In: Advanced materials research, vol 724. Trans Tech Publications Ltd, Zurich, pp 323–329

    Google Scholar 

  • Mantai KE, Bishop NI (1967) Studies on the effects of ultraviolet irradiation on photosynthesis and on the 520 nm light-dark difference spectra in green algae and isolated chloroplasts. Biochim Biophys Acta Bioenerg 131(2):350–356

    CAS  Google Scholar 

  • Mascal M, Dutta S, Gandarias I (2014) Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7–C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53(7):1854–1857

    CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348

    CAS  PubMed  Google Scholar 

  • Moradi-kheibari N, Ahmadzadeh H, Murry MA, Liang HY, Hosseini M (2019) Fatty acid profiling of biofuels produced from microalgae, vegetable oil, and waste vegetable oil. In: Advances in feedstock conversion technologies for alternative fuels and bioproducts. Woodhead Publishing, pp 239–254, Sawston, United Kingdom, Cambridge

    Google Scholar 

  • Morowvat MH, Ghasemi Y (2016) Medium optimization by artificial neural networks for maximizing the triglyceridesrich lipids from biomass of Chlorella vulgaris. Int J Pharm Clin Res 8(10):1414–1417

    Google Scholar 

  • Morschett H, Freier L, Rohde J, Wiechert W, von Lieres E, Oldiges M (2017) A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design. Biotechnol Biofuel 10(1):26

    Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1291–1301

    CAS  PubMed  Google Scholar 

  • Murali P, Hari K, Prathap DP (2016) An economic analysis of biofuel production and food security in India. Sugar Tech 18(5):447–456

    Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    CAS  PubMed  Google Scholar 

  • Nathan (10 April 2013) Breakthrough in microalgae oil production, accelerated ability to produce variety of different oils. CleanTechnica. Accessed 29 Nov 2013

    Google Scholar 

  • National Research Council (2013a) Sustainable development of algal biofuels in the United States. National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council (2013b) Algal carbon conversion flagship—National Research Council Canada. https://Nrc-cnrc.gc.ca. Accessed 29 Nov 2013

  • National Research Council (2013c) Government of Canada investing in technology to reduce GHG emissions in the oil sands—National Research Council Canada. https://Nrc-cnrc.gc.ca. Archived from the original on 20 December 2013. Accessed 29 Nov 2013

  • O’Connor D (2011) Canadian biofuel policies. S&T 2:1–19

    Google Scholar 

  • Oh-Hama T, Miyachi S (1988) Microalgal biotechnology: Chlorella. Cambridge University Press, London

    Google Scholar 

  • Okuda K, Oka K, Onda A, Kajiyoshi K, Hiraoka M, Yanagisawa K (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol 83(6):836–841

    CAS  Google Scholar 

  • Omidvarborna H, Kim DS (2019) Biodiesel production and policy. In: World biodiesel policies and production. CRC Press, Boca Raton, pp 13–74

    Google Scholar 

  • Orr VC, Rehmann L (2016) Ionic liquids for the fractionation of microalgae biomass. Curr Opin Green Sustain Chem 2:22–27

    Google Scholar 

  • Passos F, Uggetti E, Carrère H, Ferrer I (2014) Pretreatment of microalgae to improve biogas production: a review. Bioresour Technol 172:403–412

    CAS  PubMed  Google Scholar 

  • Passos H, Luís A, Coutinho JA, Freire MG (2016) Thermoreversible (ionic-liquid-based) aqueous biphasic systems. Sci Rep 6(1):1–7

    Google Scholar 

  • Paul V, Shekharaiah PC, Kushwaha S, Sapre A, Dasgupta S, Sanyal D (2020) Role of algae in CO2 sequestration addressing climate change: a review. In: Renewable energy and climate change. Springer, Singapore, pp 257–265

    Google Scholar 

  • Piccolo A (2010) Aquatic Biofuels: New Options for Bioenergy. Universal-Publishers

    Google Scholar 

  • Piccolo T (2013) Origin oil’s bioreactor: a breakthrough in the production of oil from algae. Archived 3 December 2013 at the Wayback Machine. Accessed 16 Jan 2013

    Google Scholar 

  • PNNL (2013) Algae to crude oil: million-year natural process takes minutes in the lab. PNNL.780 17 Dec 2013. Accessed 16 Jan 2014

    Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    CAS  Google Scholar 

  • Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energy 31(1):29–36

    CAS  Google Scholar 

  • Qureshi N, Lolas A, Blaschek HP (2001) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 26(5):290–295

    CAS  PubMed  Google Scholar 

  • Ramírez-López C, Chairez I, Fernández-Linares L (2016) A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Bioresour Technol 212:207–216

    PubMed  Google Scholar 

  • Rao PP, Bantilan MCS (2007) Emerging biofuel industry: a case for pro-poor agenda with special reference to India. documentation. International crops research institute for the semi-arid tropics, Patancheru, Hyderabad, Andhra Pradesh

    Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    CAS  Google Scholar 

  • Rehman ZU, Anal AK (2019) Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol Rep 21:e00298

    Google Scholar 

  • Richmond A (ed) (2008) Handbook of microalgal culture: biotechnology and applied phycology. WileyHoboken, New Jersy, United states

    Google Scholar 

  • Roselet F, Vandamme D, Roselet M, Muylaert K, Abreu PC (2015) Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Res 10:183–188

    Google Scholar 

  • Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MH, Kleinegris DM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9(10):3036–3043

    Google Scholar 

  • Sari YW, Mulder WJ, Sanders JP, Bruins ME (2015) Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol J 10(8):1138–1157

    CAS  PubMed  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. Biochem Soc Trans 28(6):912–914

    CAS  PubMed  Google Scholar 

  • Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60(9):722–727

    Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Google Scholar 

  • Schreiber C, Behrendt D, Huber G, Pfaff C, Widzgowski J, Ackermann B, Müller A, Zachleder V, Moudříková Å , MojzeÅ¡ P, Schurr U (2017) Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany. Bioresour Technol 234:140–149

    CAS  PubMed  Google Scholar 

  • Sears J, SunSource Ind (2007) Closed system bioreactor apparatus. U.S. Patent Application 11/510,442

    Google Scholar 

  • Serna-García R, Zamorano-López N, Seco A, Bouzas A (2020) Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): methane potential and microbial diversity. Bioresour Technol 298:122521

    PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012a) High lipid induction in microalgae for biodiesel production. Energies 5(5):1532–1553

    CAS  Google Scholar 

  • Sharma V, Ramawat KG, Choudhary BL (2012b) Biodiesel production for sustainable agriculture. In: Sustainable agriculture reviews. Springer, Dordrecht, pp 133–160

    Google Scholar 

  • Sharma AK, Sahoo PK, Singhal S (2015) Screening and optimization of culture media for Chlorella sp. as a raw material for biodiesel production. Int J Pharma Bio Sci 6(3):B251–B262

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Natl Renew Energy Lab 328:1–294

    Google Scholar 

  • Sims B (2012) Blue marble, um partner to optimize algal biomass utilization. Archived from the original on 29 July 2012. Accessed 13 Mar 2012

    Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610

    CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16

    CAS  PubMed  Google Scholar 

  • Solazyme Integrated Biorefinery (2012) Solazyme integrated biorefinery: diesel fuels from heterotrophic algae (PDF). Accessed 13 Mar 2012

    Google Scholar 

  • Solzayme: Meeting the growing need for renewable fuels. Archived from the original on 6 March 2012. Accessed 13 Mar 2012

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    CAS  PubMed  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28(2):126–128

    CAS  PubMed  Google Scholar 

  • Stern DI (2010) The role of energy in economic growth. USAEE-IAEE working paper (10-055)

    Google Scholar 

  • Terme N, Boulho R, Kendel M, Kucma JP, Wielgosz-Collin G, Bourgougnon N, Bedoux G (2017) Selective extraction of lipid classes from Solieria chordalis and Sargassum muticum using supercritical carbon dioxide and conventional solid–liquid methods. J Appl Phycol 29(5):2513–2519

    CAS  Google Scholar 

  • Tesfa B, Gu F, Mishra R, Ball A (2014) Emission characteristics of a CI engine running with a range of biodiesel feedstocks. Energies 7(1):334–350

    Google Scholar 

  • The Sapphire Story. Archived from the original on 18 March 2014. Accessed 21 Apr 2014

    Google Scholar 

  • Thomas WH, Tornabene TG, Weissman J (1984) Screening for lipid yielding microalgae: activities for 1983. Final subcontract report (No. SERI/STR-231-2207). Solar Energy Research Inst., Golden, CO (USA)

    Google Scholar 

  • Thompson GA Jr (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302(1):17–45

    PubMed  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 178–214

    Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48(5):251

    CAS  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239

    CAS  PubMed  Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MH (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    CAS  PubMed  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    CAS  PubMed  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20

    CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuel Bioprod Biorefin 4(3):287–295

    CAS  Google Scholar 

  • Williams PJLB, Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590

    CAS  Google Scholar 

  • Xenopoulos MA, Frost PC, Elser JJ (2002) Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83(2):423–435

    Google Scholar 

  • Xie T, Xia Y, Zeng Y, Li X, Zhang Y (2017) Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy. Bioresour Technol 233:247–255

    CAS  PubMed  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189

    CAS  Google Scholar 

  • Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sust Energ Rev 15(2):1098–1116

    CAS  Google Scholar 

  • Zhao G, Chen X, Wang L, Zhou S, Feng H, Chen WN, Lau R (2013a) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol 128:337–344

    CAS  PubMed  Google Scholar 

  • Zhao Y, Wang J, Zhang H, Yan C, Zhang Y (2013b) Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresour Technol 136:461–468

    CAS  PubMed  Google Scholar 

  • Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E, Chen S, Frear C (2014) Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour Technol 161:423–430

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, M., Mishra, V. (2020). An Introduction to Algal Biofuels. In: Srivastava, N., Srivastava, M., Mishra, P.K., Gupta, V.K. (eds) Microbial Strategies for Techno-economic Biofuel Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7190-9_1

Download citation

Publish with us

Policies and ethics