Skip to main content

Key Applications of CRISPR/Cas for Yield and Nutritional Improvement

  • Chapter
  • First Online:
CRISPR Crops

Abstract

The ever-growing human population and climate shifts are creating a dire need to the development of crop plants with high yield and improved nutritional quality. Conventional breeding tools cannot satisfy the future needs. Increased agricultural production through advanced technologies is urgently required to increase yield and easy access to nutritious food worldwide. Providentially, next-generation genome editing technologies like CRISPR/Cas system pave the way toward a new horizon for crop plant improvement and subsequently transform classical plant breeding. In this chapter, applications of CRISPR/Cas-based genome editing for yield and quality improvement are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad B, Raina A, Khan S (2019) Impact of biotic and abiotic stresses on plants and their responses. In: Disease resistance in crop plants. Springer, Cham, pp 1–19

    Google Scholar 

  • Ahmed HG, Sajjad M, Li M et al (2019) Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustainability 11(9):2584

    Article  Google Scholar 

  • Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C et al (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

    Article  Google Scholar 

  • Behera BK, Rout PK, Behera S (2019) Health for all. In: Move towards zero. Springer, Singapore, pp 91–112

    Chapter  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bouis H, Welch R (2019) Reducing mineral and vitamin deficiencies through biofortification: progress under harvest plus. In: Sustaining global food security: the nexus of science and policy. CSIRO Publishing, Canberra, p 64

    Google Scholar 

  • Braatz J, Harloff HJ, Mascher M et al (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Chen L, Liu X et al (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16(1):176–185

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16(1):232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yang D, Zhang Y et al (2018) Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato. New Phytol 219(1):176–194

    Article  CAS  PubMed  Google Scholar 

  • Civan P, Brown TA (2017) Origin of rice (Oryza sativa L.) domestication genes. Genet Resour Crop Evid 64(6):1125–1132

    Article  CAS  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601

    Article  CAS  PubMed  Google Scholar 

  • Dhungana P, Eskridge KM, Baenziger PS et al (2007) Analysis of genotype-by-environment interaction in wheat using a structural equation model and chromosome substitution lines. Crop Sci 47(2):477–484

    Article  Google Scholar 

  • Du H, Zeng X, Zhao M et al (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97

    Article  CAS  PubMed  Google Scholar 

  • Evans LT, Evans LT, Evans LT (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Fischer RA, Rees D, Sayre KD et al (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38(6):1467–1475

    Article  Google Scholar 

  • Hefferon KL, Makhzoum A (2015) Biotechnological approaches for nutritionally enhanced food crop production. Adv Food Biotechnol 10(6):944–952

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12

    Article  CAS  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H et al (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37(7):744–754

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li J, Zhou J et al (2018) Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. Proc Natl Acad Sci 115(32):E7559–E7567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophy Res 467(1):76–82

    Article  CAS  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M et al (2017) Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat Plants 3(11):866–874

    Article  CAS  PubMed  Google Scholar 

  • Jacobs TB, La-Fayette PR, Schmitz RJ et al (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain SM, Gupta SD (2013) Biotechnology of neglected and underutilized crops. Springer, Berlin

    Book  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG et al (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Biotechnol J 15(5):648–657

    CAS  Google Scholar 

  • Jouanin A, Schaart JG, Boyd LA et al (2019) Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α-and γ-gliadin gene families. BMC Plant Biol 19(1):333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knauf VC, Facciotti D (1995) Genetic engineering of foods to reduce the risk of heart disease and cancer. In: Nutrition and biotechnology in heart disease and cancer. Springer, Boston, pp 221–228

    Chapter  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16(1):258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Li X, Zhou Z et al (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    PubMed  PubMed Central  Google Scholar 

  • Li R, Li R, Li X et al (2018a) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Biotechnol J 16(2):415–427

    CAS  Google Scholar 

  • Li X, Wang Y, Chen S et al (2018b) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Li Y, Ma L (2019) CRISPR/Cas9-based genome editing and its applications for functional genomic analyses in plants. Small Methods 3(3):1800473

    Article  CAS  Google Scholar 

  • Liu J, Cheng X, Liu P et al (2017) miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol 174(3):1931–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Matson PA, Parton WJ, Power AG et al (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509

    Article  CAS  PubMed  Google Scholar 

  • McGinn M, Phippen WB, Chopra R et al (2019) Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Biotechnol J 17(4):776–788

    CAS  Google Scholar 

  • Michelmore RW, Shaw DV (1988) Character dissection. Nature 335(6192):672–673

    Article  CAS  PubMed  Google Scholar 

  • Miralles DJ, Slafe GA (2007) Sink limitations to yield in wheat: how could it be reduced? J Agric Sci 145(2):139–149

    Article  Google Scholar 

  • Mohan JS, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Gene Conserve 10:41

    Google Scholar 

  • Mubarik MS, Khan SH, Ahmad A et al (2016) Disruption of phytoene desaturase gene using transient expression of Cas9: gRNA complex. Int J Agric Biol 18(5):990–996

    Article  CAS  Google Scholar 

  • Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M (2018) Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77

    Article  CAS  PubMed  Google Scholar 

  • Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6(1):1–8

    Article  CAS  Google Scholar 

  • Nonaka S, Someya T, Zhou S et al (2017) An Agrobacterium tumefaciens strain with gamma-aminobutyric acid transaminase activity shows an enhanced genetic transformation ability in plants. Sci Rep 7:42649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odipio J, Alicai T, Ingelbrecht I et al (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C et al (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearsall DM (2008) Plant domestication and the shift to agriculture in the Andes. In: The handbook of South American archaeology. Springer, New York, pp 105–120

    Chapter  Google Scholar 

  • Philipson T, Linthicum MT, Snider JT (2014) Tutorial on health economics and outcomes research in nutrition. JPEN Parenter Enter 38:5–16

    Article  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B 363(1491):447–465

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC et al (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458

    Article  CAS  PubMed  Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Top Life Sci 1(2):169–182

    Article  CAS  Google Scholar 

  • Rodriguez-Leal D, Lemmon ZH, Man J et al (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171(2):470–480

    Article  CAS  PubMed  Google Scholar 

  • Rustgi S, Shafqat MN, Kumar N et al (2013) Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: bridging gaps between QTLs and underlying genes. PLoS One 8(7):e0070526

    Article  CAS  Google Scholar 

  • Sajjad M, Ma X, Khan SH et al (2017) TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.). BMC Plant Biol 17(1):164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Leon S, Gil-Humanes J, Ozuna CV et al (2018) Low gluten, non-transgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J16(4):902–910

    Article  CAS  Google Scholar 

  • Scheben A, Wolter F, Batley J et al (2017) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytol 216(3):682–698

    Article  CAS  PubMed  Google Scholar 

  • Sedbrook JC, Phippen WB, Marks MD (2014) New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci 227:122–132

    Article  CAS  PubMed  Google Scholar 

  • Sedeek KE, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Sequeira A, Shen K, Gottlieb A et al (2019) Human brain transcriptome analysis finds region-and subject-specific expression signatures of GABA AR subunits. Commun Biol 2(1):1–14

    Article  Google Scholar 

  • Shao GN, Xie LH, Jiao GA et al (2017) CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in rice. Chin J Rice Sci 31(2):216–222

    Google Scholar 

  • Shen R, Wang L, Liu X et al (2017) Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat Commun 8(1):1–10

    Article  CAS  Google Scholar 

  • Shen L, Wang C, Fu Y et al (2018) QTL editing confers opposing yield performance in different rice varieties. J Integr Plant Biol 60(2):89–93

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao H, Wang H et al (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    Article  CAS  PubMed  Google Scholar 

  • Soyk S, Muller NA, Park SJ et al (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49(1):162

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhang X, Wu C et al (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9(4):628–631

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Wang Q, Sun G et al (2019) Dissecting the genetic basis of grain size and weight in barley (Hordeum vulgare L.) by QTL and comparative genetic analyses. Front Plant Sci 10:469

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang L, Mao B, Li Y et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27(1):205–233

    Article  CAS  PubMed  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uluisik S, Chapman NH, Smith R et al (2016) Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34(9):950–952

    Article  CAS  PubMed  Google Scholar 

  • Viana VE, Pegoraro C, Busanello C et al (2019) Mutagenesis in rice: the basis for breeding a new super plant. Front Plant Sci 2019:10

    Google Scholar 

  • Walker AR, Walker BF, Adam F (2003) Nutrition, diet, physical activity, smoking, and longevity: from primitive hunter-gatherer to present passive consumer—how far can we go? Nutrition 19(2):169–173

    Article  PubMed  Google Scholar 

  • Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34(6):582

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36:6–7

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Xing Y, Li Z et al (2012) Improving rice yield and quality by QTL pyramiding. Mol Breed 29(4):903–913

    Article  CAS  Google Scholar 

  • Wang YJ, Zheng HP, Zhang B et al (2014) Cloning and respond of a cold shock domain protein (CnCSDP) gene to cold stress in noble scallop Chlamys nobilis (Bivalve: Pectinidae). Mol Biol Rep 41(12):7985–7994

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Studer AJ, Zhao Q et al (2015) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics 200(3):965–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang T, Zhang H, Zhu H (2019) CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic Res 6(1):1–3

    Article  CAS  Google Scholar 

  • Xie H, Zhu M, Tang G et al (2017) Progress in gene editing technique and its prospect in rice quality research. Agric Sci Technol 18(12):2246–2275

    Google Scholar 

  • Xu C, Liberator KL, MacAlister CA et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47(7):784–792

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wu JJ, Tang T et al (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7(1):1–13

    CAS  Google Scholar 

  • Ye J, Wang X, Hu T et al (2017) An InDel in the promoter of Al-activated malate transporter9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. Plant Cell 29(9):2249–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu QH, Wang B, Li N et al (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7(1):1–9

    CAS  Google Scholar 

  • Zhai H, Feng Z, Du X et al (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor Appl Genet 131(3):539–553

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang H, Botella JR et al (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60(5):369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li D, Zhang D et al (2018b) Analysis of the functions of Ta GW 2 homoeologs in wheat grain weight and protein content traits. Plant J 94(5):857–866

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Wang B, Tan J et al (2020) Plant synthetic metabolic engineering for enhancing crop nutritional quality. Plant Commun 1(1):100017

    Article  PubMed  Google Scholar 

  • Zlobin NE, Lebedeva MV, Taranov VV (2020) CRISPR/Cas9 genome editing through in planta transformation. Crit Rev Biotechnol 2020:1–16

    Google Scholar 

  • Zsogon A, Cermak T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36(12):1211–1216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mubarik, M.S., Khan, S.H., Sajjad, M. (2021). Key Applications of CRISPR/Cas for Yield and Nutritional Improvement. In: Ahmad, A., Khan, S.H., Khan, Z. (eds) CRISPR Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-7142-8_7

Download citation

Publish with us

Policies and ethics