Skip to main content

Diffuse Astrocytic and Oligodendroglial Tumors

  • Chapter
  • First Online:
Neuropathology of Brain Tumors with Radiologic Correlates
  • 814 Accesses

Abstract

The 2016 WHO Classification of CNS tumors categorizes diffuse gliomas (astrocytic and oligodendroglial) that infiltrate the CNS parenchyma and are further classified as astrocytic, oligodendroglial, and rare mixed oligodendroglial-astrocytic. The diffuse glioma grades are: Grade II (low grade), Grade III (anaplastic) and Grade IV (glioblastoma). Astrocytic tumors demonstrate IDH mutations (IDH1 > IDH2), are associated with TP53 and ATRX mutation, do not exhibit loss of chromosomes 1p and 19q.These have a definite effect on prognosis and may be predictive of response to radiation and /or alkylating chemotherapy. IDH-mutant, diffuse astrocytomas have an intrinsic capacity for malignant progression to IDH-mutant, anaplastic astrocytoma grade III and ultimately progressing to IDH-mutant, glioblastoma grade IV. (Juratli et al. J Neurooncol 108(3):403–10, 2012) All oligodendrogliomas demonstrate IDH1 mutation along with the characteristic 1p and 19q co-deletion, rarely demonstrate p53 mutation and ATRX mutation. (Watanabe et al. Am J Pathol 174(4):1149–53, 2009). The third pathway includes tumors which do not exhibit IDH-mutation are IDH-wildtype gliomas. Such gliomas appear to rapidly acquire multiple complex genetic alterations, to become glioblastomas very early in their development due to amplification or mutation of EGFR, and loss of the PTEN gene (Yan et al. N Engl J Med 360(8):765–73, 2009). The cell of origin for some tumors remains unknown, such tumors are classified according to their pure or mixed histology (oligoastrocytoma), the grade and molecular basis. Main molecular makers in gliomas are IDH 1/2, 1p/19q codeletion, MGMT, TERT, ATRX and p53, EGFR, PDGF, PDGFR and H3 K27M-mutation, which are of diagnostic significance. Details have been discussed in the following chapters.

Reinforcing the latest WHO classification (2016) which integrates the phenotypic and genotypic status based on the IDH status, gliomas have been classified as follows:

Table 1

The chapter illustrates multiple MR images and findings, intraoperative cytology, histopathology, IHC pictures, and their features along with differential diagnosis for each of the above, genetic profile, prognosis, and case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velázquez Vega JE, Brat DJ. Incorporating advances in molecular pathology into brain tumor diagnostics. Adv Anat Pathol. 2018;25(3):143–71.

    Article  PubMed  CAS  Google Scholar 

  2. McLendon RE, Adesina AM. Pathology of diffuse astrocytomas definition and overview. Updated: 4 Nov 2015.

    Google Scholar 

  3. Juratli TA, Kirsch M, Robel K, et al. IDH mutations as an early and consistent marker in low grade astrocytomas WHO grade II and their consecutive secondary high grade gliomas. J Neurooncol. 2012;108(3):403–10.

    Article  PubMed  CAS  Google Scholar 

  4. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S. Riggins GJ IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Parsons DW, Jones S, Zhang X, Lin JC, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Watanabe T, Nobusawa S, Kleihues P, Ohagaki H. IDH 1 mutations are early events in development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174(4):1149–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. SongTao Q, Lei Y, Si G, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastomas. Cancer Sci. 2012;103(2):269–73.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen A, Holmen S, Colman H. IDH1and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13(5):345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Labussiere M, Idbaih A, Wang XW, et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology. 2010;74(23):1886–90.

    Article  PubMed  CAS  Google Scholar 

  10. Loius DN, Ohgaki H, Weister O. WHO Classification of Tumors of the Central Nervous System (medicine). 4th Rev ed. 2016.

    Google Scholar 

  11. Kleihues P, Soylemezoglu F, Schäuble B, Scheithauer BW, Burger PC. Histopathology, classification, and grading of gliomas. Glia. 1995;15(3):211–21.

    Article  PubMed  CAS  Google Scholar 

  12. Osborn A. Osborn’s brain. 2nd ed. Salt Lake City, UT: Amirsys; 2013. p. 528–9.

    Google Scholar 

  13. Osborn A, Salzman K, Jhaveri M. Diagnostic imaging: brain. 3rd ed. Philadelphia: Elsevier; 2016. p. 435.

    Google Scholar 

  14. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  Google Scholar 

  15. Wiestler B, Capper D, Holland-Letz T, Korshunov A, von Deimling A, Pfister SM, Platten M, Weller M, Wick W. ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol. 2013;126(3):443–51.

    Article  PubMed  CAS  Google Scholar 

  16. Weller M, Weber RG, Willscher E, Riehmer V, Hentschel B, Kreuz M, et al. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome-and transcriptomewide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol. 2015;129:679–93.

    Article  PubMed  CAS  Google Scholar 

  17. Brat DJ, Aldape K, Colman H, Holland EC, Louis DN. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136(5):805–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Brat DJ, Scheithauer BW, Medina-Flores R, Rosenblum MK, Burger PC. Infiltrated astrocytoma with granular cell features (granular cell astrocytomas): a study of histopathologic features, grading and outcome. Am J Surg Pathol. 2002;26(6):750–7.

    Article  PubMed  Google Scholar 

  19. Krouwer HG, Davis RL, Silver P, Prados M. Gemistocytic astrocytomas: a reappraisal. J Neurosurg. 1991;74(3):399–406.

    Article  PubMed  CAS  Google Scholar 

  20. Capper D, Weissert S, Balss J, et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 2010;20:245–54.

    Article  PubMed  CAS  Google Scholar 

  21. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Classification of Tumors of the Central Nervous System, IARC 2016. Gemistocytic astrocytoma. p. 23.

    Google Scholar 

  22. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118(4):469–74.

    Article  PubMed  Google Scholar 

  23. Wick W, Stoffels M, Engel C, et al. NOA-04 randomized phase III study of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. J Clin Oncol. 2009;27(35):5874–80.

    Article  PubMed  CAS  Google Scholar 

  24. Osborn A. Osborn’s brain. 2nd ed. Salt Lake City, UT: Amirsys; 2013. p. 533–6.

    Google Scholar 

  25. Osborn A, Salzman K, Jhaveri M. Diagnostic imaging: brain. 3rd ed. Philadelphia: Elsevier; 2016. p. 438.

    Google Scholar 

  26. Reis GF, Pekmezci M, Hansen HM, et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol. 2015;74(5):442–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Houillier C, Wang X, Kaloshi G, et al. IDH1 or IDH2 mutations predict longer survival ad response to temozolomide in low-grade gliomas. Neurology. 2010;75(17):1560–6.

    Article  PubMed  CAS  Google Scholar 

  28. Osborn A. Osborn’s brain. 2nd ed. Salt Lake City, UT: Amirsys; 2013. p. 536–8.

    Google Scholar 

  29. Osborn A, Salzman K, Jhaveri M. Diagnostic imaging: brain. 3rd ed. Philadelphia: Elsevier; 2016. p. 443.

    Google Scholar 

  30. Brat D, Scheithauer B, Medina-Flores R, Rosenblum M, Burger P. Infiltrative astrocytomas with granular cell features (granular cell astrocytomas): a study of histopathologic features, grading, and outcome. Am J Surg Pathol. 2002;26:750–7.

    Article  PubMed  Google Scholar 

  31. Louis DL, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO Classification of Tumors of the Central Nervous System. Lyon: IARC; 2016.

    Google Scholar 

  32. Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA. Immunohistochemical analysis of hSNF5 /INI1 in pediatric CNS neoplasms. Am J Surg Pathol. 2004;28(5):644–50.

    Article  PubMed  Google Scholar 

  33. Hartmann C, Hentschel B, Tatagiba M, et al. Molecular markers in low grade gliomas: predictive or prognostic? Clin Cancer Res. 2011;17(13):4588–99.

    Article  PubMed  CAS  Google Scholar 

  34. Gao K, Li G, Qu Y, Wang M, Cui B, Ji M, Shi B, Hou P. TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas. Oncotarget. 2016;7(8):8712–25.

    Article  PubMed  Google Scholar 

  35. Håvik AB, Brandal P, Honne H, Dahlback HS, Scheie D, Hektoen M, Meling TR, Helseth E, Heim S, Lothe RA, Lind GEJ. MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR. Transl Med. 2012;10:36.

    Article  CAS  Google Scholar 

  36. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Classification of Tumors of the Central Nervous System, IARC 2016. Glioblastoma. p. 42, 43.

    Google Scholar 

  37. Kozak KR, Moody JS. Giant cell glioblastoma: a glioblastoma subtype with distinct epidemiology and superior prognosis. Neuro Oncol. 2009;11(6):833–41.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Takami H, Yoshida A, Fukushima S, Arita H, Matsushita Y, Nakamura T, Ohno M, Miyakita Y, Shibui S, Narita Y, Ichimura K. Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol. 2015;25(3):256–65.

    Article  PubMed  CAS  Google Scholar 

  39. Hilda M-D, Kleinschmidt-DeMasters BK, Powell SZ, Yachnis AT. Giant cell glioblastoma and pleomorphic xanthoastrocytoma show different immunohistochemical profiles for neuronal antigens and p53 but share reactivity for class III β-tubulin. Arch Pathol Lab Med. 2003;127(9):1187–91.

    Google Scholar 

  40. Lohkamp LN, Schinz M, Gehlhaar C, Guse K, Thomale UW, Vajkoczy P, Heppner FL, Koch A. MGMT promoter methylation and BRAF V600E mutations are helpful markers to discriminate pleomorphic xanthoastrocytoma from giant cell glioblastoma. PLoS One. 2016;6:e17948.

    Google Scholar 

  41. Murakami C, Yoshida Y, Yamazaki T, Yamazaki A, Nakata S, Hokama Y, Ishiuchi S, Akimoto J, Shishido-Hara Y, Yoshimoto Y, Matsumura N, Nobusawa S, Ikota H, Yokoo H. Clinicopathological characteristics of circumscribed high-grade astrocytomas with an unusual combination of BRAF V600E, ATRX, and CDKN2A/B alternations. Brain Tumor Pathol. 2019;36(3):103–11.

    Article  PubMed  CAS  Google Scholar 

  42. Peraud A, Watanabe K, Kreth FW, Schwechheimer K, Yonekawa Y. Genetic profile of giant cell glioblastoma. Lab Invest. 1999;79(2):123–9.

    PubMed  CAS  Google Scholar 

  43. Borota OC, Scheie D, Bjerkhagen B, Jacobsen EA, Skullerud K. Gliosarcoma with liposarcomatous component, bone infiltration and extracranial growth. Clin Neuropathol. 2006;25(4):200–3.

    PubMed  CAS  Google Scholar 

  44. Cachia D, Kamiya-Matsuoka C, Mandel JJ, et al. Primary and secondary gliosarcomas: clinical, molecular and survival characteristics. J Neuro-Oncol. 2015;125(2):401–10.

    Article  CAS  Google Scholar 

  45. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Classification Of Tumors Of The Central Nervous System, IARC 2016, Gliosarcoma. p. 49.

    Google Scholar 

  46. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, et al. World Health Organization Classification of Tumors of the Central Nervous System IARC 2016. Diffuse midline glioma, H3K27M mutant. p. 58.

    Google Scholar 

  47. Buczkowicz P, Hoeman C, Rakopoulos P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(5):451–6. https://doi.org/10.1038/ng.2936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, et al. NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J. 2012;31:593–605. https://doi.org/10.1038/emboj.2011.431.

    Article  PubMed  CAS  Google Scholar 

  49. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Europathol. 2012;124:439–47. https://doi.org/10.1007/s00401-012-0998-0.

    Article  CAS  Google Scholar 

  50. Grimm SA, Chamberlain MC. Brainstem glioma: a review. Curr Neurol Neurosci Rep. 2013;13:346. https://doi.org/10.1007/s11910-013-0346-3.

    Article  PubMed  CAS  Google Scholar 

  51. Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, Sure U, Wrede K, Nakazato Y, Tanaka Y, Vital A, Mariani L, Stawski R, et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010;177:2708–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, Flynn H, Passe S, Felten S, Brown PD, Shaw EG, Buckner JC. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66:9852–61.

    Article  PubMed  CAS  Google Scholar 

  53. Erdem-Eraslan L, Gravendeel LA, de Rooi J, Eilers PH, Idbaih A, Spliet WG, den Dunnen WF, Teepen JL, Wesseling P, SillevisSmitt PA, Kros JM, Gorlia T, van den Bent MJ, et al. Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. J Clin Oncol. 2013;31:328–36.

    Article  PubMed  CAS  Google Scholar 

  54. Van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY, Bernsen HJ, Frenay M, Tijssen CC, Grisold W, Sipos L, Enting RH, French PJ, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013;31:344–50.

    Article  PubMed  CAS  Google Scholar 

  55. Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, Fink K, Souhami L, Laperriere N, Curran W, Mehta M. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31:337–43.

    Article  PubMed  CAS  Google Scholar 

  56. Osborn A. Osborn’s brain. 2nd ed. Salt Lake City, UT: Amirsys; 2013. p. 553–7.

    Google Scholar 

  57. Osborn A, Salzman K, Jhaveri M. Diagnostic imaging: brain. 3rd ed. Philadelphia: Elsevier; 2016. p. 468–71.

    Google Scholar 

  58. Rodrigue FJ, Tihan T, Burger PC. Clinico pathologic features of peadtric oligodendroglioma. Am J Surg Pathol. 2014;38(8):1058–70.

    Article  Google Scholar 

  59. Wesseling P, van den Bent M, Perry A. Oligodendroglioma: pathology, molecular mechanism makers. Acta Neuropathol. 2015;129(6):809–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Louis DN, von Deimling A, Cavenee WK. Diffuse astrocytic and oligodendroglial tumours. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Branger FD, et al., editors. WHO classification of tumours of the central nervous system. 4th Rev ed. Lyon: International Agency for Research Centre; 2016. p. 15

    Google Scholar 

  61. Giannini C, Scheithauer BW, Weaver AL, Burger PC. Oligodendrogliomas: reproducibilty and prognostic value of histologic diagnosis and grading. J Neuropathol Exp Neurol. 2001;60:248.

    Article  PubMed  CAS  Google Scholar 

  62. Takei Y, Mirra SS, Miles ML. Eosinophilic granular cells in oligodendrogliomas. An ultrastructural study. Cancer. 1976;38(5):1968–76.

    Article  PubMed  CAS  Google Scholar 

  63. Takashi K, Tsuda M, Kanno H, Murata J, Mahabir R. Differential diagnosis of small glioblastoma and anaplastic Oligodendroglioma: a case report.

    Google Scholar 

  64. Huse JT, Diamond EL, Wang L, et al. Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true “oligoastrocytoma”? Acta Neuropathol. 2015;129:151–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chougule, M. (2020). Diffuse Astrocytic and Oligodendroglial Tumors. In: Neuropathology of Brain Tumors with Radiologic Correlates. Springer, Singapore. https://doi.org/10.1007/978-981-15-7126-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7126-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7125-1

  • Online ISBN: 978-981-15-7126-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics