Skip to main content

Interconnect Quality and Reliability of 3D Packaging

  • Chapter
  • First Online:
3D Microelectronic Packaging

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 64))

Abstract

Quality and reliability aspects of 3D IC and packages are discussed in this chapter. The main focuses are interconnects related quality and reliability issues. For the 3D packages, interconnects may include microbump, TSV, UBM and copper traces etc. We compare them to the quality and reliability concerns observed in the existing interconnects, as well as eh methodology to predict the field performances. We shall cover microstructure changes and failures driven by mechanical stressing, electromigration (EM), and thermomigration (TM). This way we can see how the transition, for example, from C-4 joints to microbumps, may affect the failure modes. On mechanical stressing, we emphasize the brittle nature as well as micro-void formation, especially Kirkendall void formation in microbumps. A string of voids in a brittle material can easily lead to fracture damage. The interest in mechanical failures is because for mobile and wearable devices, the frequency of impact and dropping to the ground is high. On EM and TM in microbumps and TSV, we emphasize the enhanced failure mode due to Joule heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.N. Tu, Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 51(3), 517–523 (2011)

    Article  Google Scholar 

  2. Y. Wang, I.M. De Rosa, K.N. Tu, Size effect on ductile-to-brittle transition in Cu-solder-Cu micro-joints, in 2015 Proceedings of 65th Electronic Components and Technology Conference (2015), pp. 632–639

    Google Scholar 

  3. S.F. Choudhury, L. Ladani, Grain growth orientation and anisotropy in Cu6Sn5 intermetallic: nanoindentation and electron backscatter diffraction analysis. J. Electron. Mater. 43(4), 996–1004 (2014)

    Article  ADS  Google Scholar 

  4. K. Sakuma, K. Sueoka, S. Kohara, K. Matsumoto, H. Noma, T. Aoki, Y. Oyama, H. Nishiwaki, P.S. Andry, C.K. Tsang, J.U. Knickerbocker, Y. Orii, IMC bonding for 3D interconnection, in 2010 Proceedings of 60th Electronic Components and Technology Conference (2010), pp. 864–871

    Google Scholar 

  5. J.F. Li, P. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)

    Google Scholar 

  6. H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, C.R. Kao, Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Trans. Device Mater. Reliab. 12(2), 233–240 (2012)

    Article  Google Scholar 

  7. S.J. Wang, L.H. Hsu, N.K. Wang, C.E. Ho, EBSD investigation of Cu–Sn IMC microstructural evolution in Cu/Sn–Ag/Cu microbumps during isothermal annealing. J. Electron. Mater. 43(1), 219–228 (2014)

    Article  ADS  Google Scholar 

  8. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97(2), 24508 (2005)

    Article  Google Scholar 

  9. J. Yu, J.Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn–3.5Ag solder joints. Acta Mater. 56(19), 5514–5523 (2008)

    Article  Google Scholar 

  10. K.-N. Tu, Solder Joint Technology (Springer, US, 2007)

    Google Scholar 

  11. K. Nogita, T. Nishimura, Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys. Scr. Mater. 59(2), 191–194 (2008)

    Article  Google Scholar 

  12. H. Zhang, E. Perfecto, V.L. Calero-DdelC, F. Pompeo, An effective method for full solder intermetallic compound formation and Kirkendall void control in Sn-base solder micro-joints, in 2015 IEEE 65th Electronic Components and Technology Conference (2015), pp. 1695–1700

    Google Scholar 

  13. W.-L. Chiu, C.-M. Liu, Y.-S. Haung, C. Chen, Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization. Appl. Phys. Lett. 104(17), 171902 (2014)

    Article  ADS  Google Scholar 

  14. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts, N. Dimitrov, Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper-solder interface: plating in acidic copper solution with and without polyethylene glycol. J. Appl. Electrochem. 38(12), 1695–1705 (2008)

    Article  Google Scholar 

  15. J.H.L. Pang, Effect of intermetallic and kirkendall voids growth on board level drop reliability for SnAgCu Lead-Free BGA solder joint, 56th Electronic Components and Technology Conference, 2006, no. 1 (2006), pp. 275–282

    Google Scholar 

  16. Y. Wang, S.-H. Chae, R. Dunne, Y. Takahashi, K. Mawatari, P. Steinmann, T. Bonifield, T. Jiang, J. Im, P.S. Ho, Effect of intermetallic formation on electromigration reliability of TSV-microbump joints in 3D interconnect, in 2012 IEEE 62nd Electronic Components and Technology Conference (2012), pp. 319–325

    Google Scholar 

  17. I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne, K.J. Wolter, Degradation of Cu6Sn5 intermetallic compound by pore formation in solid-liquid interdiffusion Cu/Sn microbump interconnects. Microelectron. Eng. 117, 26–34 (2014)

    Article  Google Scholar 

  18. L. Mo, Z. Chen, F. Wu, C. Liu, Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 66, 13–21 (2015)

    Article  Google Scholar 

  19. C. Chen, D. Yu, K. Chen, Vertical interconnects of microbumps in 3D integration. MRS Bull. 40(March), 257–263 (2015)

    Article  Google Scholar 

  20. J.O. Suh, K.N. Tu, N. Tamura, Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu. Appl. Phys. Lett. 91(5), 051907 (2007)

    Article  ADS  Google Scholar 

  21. J.O. Suh, K.N. Tu, N. Tamura, Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu. J. Appl. Phys. 102(6) (2007)

    Google Scholar 

  22. Y. Tian, R. Zhang, C. Hang, L. Niu, C. Wang, Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0Ag0.5Cu solder joints on different Cu pads. Mater. Charact. 88(100), 58–68 (2014)

    Article  Google Scholar 

  23. H.F. Zou, H.J. Yang, Z.F. Zhang, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater. 56, 2649–2662 (2008)

    Article  Google Scholar 

  24. M. Li, M. Yang, J. Kim, Textured growth of Cu6Sn5 grains formed at a Sn3.5Ag/Cu interface. Mater. Lett. 66(1), 135–137 (2012)

    Article  Google Scholar 

  25. G. Hariharan, R. Chaware, I. Singh, J. Lin, L. Yip, K. Ng, S.Y. Pai, A comprehensive reliability study on a CoWoS 3D IC package (2015), pp. 573–577

    Google Scholar 

  26. Y. T. Chen, Chemical effect on diffusion in intermetallic compounds. Ph.D. thesis, UCLA, 2016

    Google Scholar 

  27. C.C. Lee, T.-F. Yang, C.-S. Wu, K.-S. Kao, R.-C. Cheng, T.-H. Chen, Reliability estimation and failure mode prediction for 3D chip stacking package with the application of wafer-level underfill. Microelectron. Eng. 107, 107–113 (2013)

    Article  Google Scholar 

  28. H.H. Hsu, S.-Y. Huang, T.-C. Chang, A.T. Wu, Nucleation and propagation of voids in microbumps for 3 dimensional integrated circuits. Appl. Phys. Lett. 99(25), 251913 (2011)

    Article  ADS  Google Scholar 

  29. G. Ghosh, Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19(05), 1439–1454 (2004)

    Article  ADS  Google Scholar 

  30. K. Sakuma, K. Tunga, B. Webb, An enhanced thermo-compression bonding process to address warpage in 3D integration of large die on organic substrates, in Proceedings of Electronic Components and Technology Conference (2015), pp. 318–324

    Google Scholar 

  31. L. Li, P. Su, J. Xue, M. Brillhart, J. Lau, P.J. Tzeng, C.K. Lee, C.J. Zhan, M.J. Dai, H.C. Chien, S.T. Wu, Addressing bandwidth challenges in next generation high performance network systems with 3D IC integration, in Proceedings of Electronic Components and Technology Conference (2012), pp. 1040–1046

    Google Scholar 

  32. C.C. Lee, P.J. Wang, J.S. Kim, Are intermetallics in solder joints really brittle? Proceedings of Electronic Components and Technology Conference (2007), pp. 648–652

    Google Scholar 

  33. P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, R.S. Chen, Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater. Sci. Eng. A 485(1–2), 305–310 (2008)

    Article  Google Scholar 

  34. L. Jiang, N. Chawla, Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr. Mater. 63(5), 480–483 (2010)

    Article  Google Scholar 

  35. H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20(1), 76–87 (1961)

    Article  ADS  Google Scholar 

  36. I.A. Blech, Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47(4), 1203–1208 (1976)

    Article  ADS  Google Scholar 

  37. C.K. Hu, K.P. Rodbell, T.D. Sullivan, K.Y. Lee, D.P. Bouldin, Electromigration and stress-induced voiding in fine Al and Al-alloy thin-film lines. IBM J. Res. Dev. 39(4), 465–497 (1995)

    Article  Google Scholar 

  38. C.K. Hu, M.B. Small, P.S. Ho, Electromigration in Al(Cu) two-level structures: Effect of Cu and kinetics of damage formation. J. Appl. Phys. 74(2), 969–978 (1993)

    Article  ADS  Google Scholar 

  39. C.K. Hu, P.S. Ho, M.B. Small, Electromigration in two-level interconnect structures with Al alloy lines and W studs. J. Appl. Phys. 72(1), 291–293 (1992)

    Article  ADS  Google Scholar 

  40. E.T. Ogawa, K.D. Lee, V.A. Blaschke, P.S. Ho, Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Trans. Reliab. 51(4), 403–419 (2002)

    Article  Google Scholar 

  41. Y. Morand, Copper metallization for advanced IC: requirements and technological solutions. Microelectron. Eng. 50(1–4), 391–401 (2000)

    Article  Google Scholar 

  42. H. Helneder, H. Korner, A. Mitchell, M. Schwerd, U. Seidel, Comparison of copper damascene and aluminum RIE metallization in BICMOS technology, vol. 55 (2001), pp. 257–268

    Google Scholar 

  43. C.K. Hu, R. Rosenberg, H. Rathore, D. Nguyen, B. Agarwala, Scaling effect in electromigration of on-chip Cu wiring, in Interconnect Technology 1999. IEEE International Conference (1999), pp. 267–269

    Google Scholar 

  44. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints. Appl. Phys. Lett. 80(4), 580–582 (2002)

    Article  ADS  Google Scholar 

  45. L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, L. Nguyen, Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints. Appl. Phys. Lett. 88(1) (2006)

    Google Scholar 

  46. K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen, Effect of current crowding on vacancy diffusion and void formation in electromigration. Appl. Phys. Lett. 76(8), 988 (2000)

    Article  ADS  Google Scholar 

  47. F.Y. Ouyang, H. Hsu, Y.P. Su, T.C. Chang, Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging. J. Appl. Phys. 112(2) (2012)

    Google Scholar 

  48. R. Labie, P. Limaye, K. Lee, C. Berry, E. Beyne, I. De Wolf, Reliability testing of Cu–Sn intermetallic micro-bump interconnections for 3D-device stacking, in 3rd Electronics System-Integration Technology Conference, ESTC (2010), pp. 1–5

    Google Scholar 

  49. R. Labie, W. Ruythooren, K. Baert, E. Beyne, B. Swinnen, Resistance to electromigration of purely intermetallic micro-bump interconnections for 3D-device stacking, in 2008 IEEE International Interconnect Technology Conference, IITC, (2008), pp. 19–21

    Google Scholar 

  50. Y.M. Lin, C.-J. Zhan, J.-Y. Juang, J.H. Lau, T.-H. Chen, R. Lo, M. Kao, T. Tian, K.-N. Tu, Electromigration in Ni/Sn intermetallic micro bump joint for 3D IC chip stacking, in 2011 IEEE 61st Electronic Components and Technology Conference (2011), pp. 351–357

    Google Scholar 

  51. C.C. Wei, C.H. Yu, C.H. Tung, R.Y. Huang, C.C. Hsieh, C.C. Chiu, H.Y. Hsiao, Y.W. Chang, C.K. Lin, Y.C. Liang, C. Chen, T.C. Yeh, L.C. Lin, D.C.H. Yu, Comparison of the electromigration behaviors between micro-bumps and C4 solder bumps, in Proceedings of Electronic Components and Technology Conference (2011), pp. 706–710

    Google Scholar 

  52. H. You, Y. Lee, S. Lee, J. Kang, Reliability of 20 μm micro bump interconnects. Technology c, 608–611 (2011)

    Google Scholar 

  53. S.Y. Huang, C.J. Zhan, Y.W. Huang, Y.M. Lin, C.W. Fan, S.C. Chung, K.S. Kao, J.Y. Chang, M.L. Wu, T.F. Yang, J.H. Lau, T.H. Chen, Effects of UBM structure/material on the reliability performance of 3D chip stacking with 30 μm-pitch solder micro bump interconnections, in Proceedings of Electronic Components and Technology Conference (2012), pp. 1287–1292

    Google Scholar 

  54. N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, K. Takahashi, M. Effects, Mechanical effects of copper through-vias in a 3D die-stacked module, in Proceedings of 52nd Electronic Components and Technology Conference, 2002, no. 2 (2002), pp. 473–479

    Google Scholar 

  55. J. Zhang, M.O. Bloomfield, J.Q. Lu, R.J. Gutmann, T.S. Cale, Modeling thermal stresses in 3-D IC interwafer interconnects. IEEE Trans. Semicond. Manuf. 19(4), 437–448 (2006)

    Article  Google Scholar 

  56. K.H. Lu, S.K. Ryu, Q. Zhao, X. Zhang, J. Im, R. Huang, P.S. Ho, Thermal stress induced delamination of through silicon vias in 3-D interconnects, in Proceedings of Electronic Components and Technology Conference (2010), pp. 40–45

    Google Scholar 

  57. J. Pak, M. Pathak, S.K. Lim, D.Z. Pan, Modeling of electromigration in through-silicon-via based 3D IC, in Proceedings of Electronic Components and Technology Conference, vol. 0, no. 1, (2011), pp. 1420–1427

    Google Scholar 

  58. Z. Chen, Z. Lv, X.F. Wang, Y. Liu, S. Liu, Modeling of electromigration of the through silicon via interconnects, in Proceedings of 2010 11th International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2010 (2010), pp. 1221–1225

    Google Scholar 

  59. Y.C. Tan, C.M. Tan, X.W. Zhang, T.C. Chai, D.Q. Yu, Electromigration performance of Through Silicon Via (TSV)—A modeling approach. Microelectron. Reliab. 50(9–11), 1336–1340 (2010)

    Article  Google Scholar 

  60. T. Frank, S. Moreau, C. Chappaz, L. Arnaud, P. Leduc, A. Thuaire, L. Anghel, Electromigration behavior of 3D-IC TSV interconnects, in Proceedings of Electronic Components and Technology Conference, vol. 3, no. 1 (2012), pp. 326–330

    Google Scholar 

  61. T. Frank, S. Moreau, C. Chappaz, P. Leduc, L. Arnaud, A. Thuaire, E. Chery, F. Lorut, L. Anghel, G. Poupon, Reliability of TSV interconnects: electromigration, thermal cycling, and impact on above metal level dielectric. Microelectron. Reliab. 53(1), 17–29 (2013)

    Article  Google Scholar 

  62. S. Moreau, D. Bouchu, Reliability of Dual Damascene TSV for high density integration: the electromigration issue. IEEE Int. Reliab. Phys. Symp. Proc. 33, 1–5 (2013)

    Google Scholar 

  63. H.J. Choi, S.M. Choi, M.S. Yeo, S.D. Cho, D.C. Baek, J. Park, An experimental study on the TSV reliability: electromigration (EM) and time dependant dielectric breakdown (TDDB), in 2012 IEEE International Interconnect Technology Conference, IITC 2012 (2012), pp. 4–6

    Google Scholar 

  64. Y. Liu, M. Li, D.W. Kim, S. Gu, K.N. Tu, Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5D integrated circuits. J. Appl. Phys. 118(13), 135304 (2015)

    Google Scholar 

  65. K. Chen, K. Tu, G. Editors, Materials challenges in three-dimensional integrated circuits, in MRS Bulletin, vol. 40, (2015), pp. 219–222

    Google Scholar 

  66. A.T. Huang, A.M. Gusak, K.N. Tu, Y.S. Lai, Thermomigration in SnPb composite flip chip solder joints. Appl. Phys. Lett. 88(14), 1–4 (2006)

    Google Scholar 

  67. A.T. Huang, K.N. Tu, Y.S. Lai, Effect of the combination of electromigration and thermomigration on phase migration and partial melting in flip chip composite SnPb solder joints. J. Appl. Phys. 100(3), 0–4 (2006)

    Google Scholar 

  68. D. Yang, Y.C. Chan, B.Y. Wu, M. Pecht, Electromigration and thermomigration behavior of flip chip solder joints in high current density packages. J. Mater. Res. 23(09), 2333–2339 (2011)

    Article  ADS  Google Scholar 

  69. F.Y. Ouyang, K.N. Tu, Y.S. Lai, A.M. Gusak, Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration. Appl. Phys. Lett. 89(22), 26–29 (2006)

    Article  Google Scholar 

  70. F.Y. Ouyang C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn–3Ag–0.5Cu flip chip solder joints. J. Appl. Phys. 110(12), 0–9 (2011)

    Google Scholar 

  71. K. Tu, Electronic Thin-Film Reliability (2010)

    Google Scholar 

  72. H. Ye, C. Basaran, D. Hopkins, Thermomigration in Pb–Sn solder joints under joule heating during electric current stressing. Appl. Phys. Lett. 82(7), 1045–1047 (2003)

    Article  ADS  Google Scholar 

  73. H.Y. Hsiao, C. Chen, Thermomigration in Pb-free SnAg solder joint under alternating current stressing. Appl. Phys. Lett. 94(9), 2007–2010 (2009)

    Article  Google Scholar 

  74. H.Y. Chen C. Chen, In-situ observation of the failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints, Proceedings of Electronic Components and Technology Conference, vol. 122103, no. 2008 (2009), pp. 319–324

    Google Scholar 

  75. X. Gu, K.C. Yung, Y.C. Chan, D. Yang, Thermomigration and electromigration in Sn8Zn3Bi solder joints. J. Mater. Sci.: Mater. Electron. 22(3), 217–222 (2011)

    Google Scholar 

  76. C. Chen, H.M. Tong, K.N. Tu, Electromigration and thermomigration in pb-free flip-chip solder joints. Annu. Rev. Mater. Res. 40(1), 531–555 (2010)

    Article  ADS  Google Scholar 

  77. M.Y. Guo, C.K. Lin, C. Chen, K.N. Tu, Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints. Intermetallics 29, 155–158 (2012)

    Article  Google Scholar 

  78. F.Y. Ouyang, W.C. Jhu, T.C. Chang, Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits. J. Alloys Compd. 580(580), 114–119 (2013)

    Article  Google Scholar 

  79. F.Y. Ouyang, W.C. Jhu, Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect, J. Appl. Phys. 113(4) (2013)

    Google Scholar 

  80. C.J. Meechan, G.W. Lehman, Diffusion of Au and Cu in a temperature gradient. J. Appl. Phys. 33(2), 634–641 (1962)

    Article  ADS  Google Scholar 

  81. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, K. Takahashi, Micro Cu bump interconnection on 3D chip stacking technology. Jpn. J. Appl. Phys. 43(4B), 2264–2270 (2004)

    Article  ADS  Google Scholar 

  82. Y. Wang, Mechanical reliabilities of porous type Cu/Cu3Sn/Cu micro-joints. Unpublished Manuscript (2016)

    Google Scholar 

  83. R.R. Chromik, R.P. Vinci, S.L. Allen, M.R. Notis, Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints. J. Mater. Res. 18(09), 2251–2261 (2003)

    Article  ADS  Google Scholar 

  84. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003)

    Article  Google Scholar 

  85. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater. 52(14), 4291–4303 (2004)

    Article  Google Scholar 

  86. L. Xu, J.H.L. Pang, Nano-indentation characterization of Ni–Cu–Sn IMC layer subject to isothermal aging. Thin solid films 504(1–2), 362–366

    Google Scholar 

  87. R.A. Mirshams, C.H. Xiao, S.H. Whang, W.M. Yin, R-Curve characterization of the fracture toughness of nanocrystalline nickel thin sheets. Mater. Sci. Eng. A 315(1–2), 21–27 (2001)

    Article  Google Scholar 

  88. T.-T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, A.-S.B. Vardøy, High-temperature mechanical integrity of Cu–Sn SLID wafer-level bonds. Metall. Mater. Trans. A 46(11), 5266–5274 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The editors would like to thank Indranath Dutta from Washington State University and Tae-Kyu Lee from Portland State University for their critical review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luhua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Liu, Y., Li, M., Tu, K.N., Xu, L. (2021). Interconnect Quality and Reliability of 3D Packaging. In: Li, Y., Goyal, D. (eds) 3D Microelectronic Packaging. Springer Series in Advanced Microelectronics, vol 64. Springer, Singapore. https://doi.org/10.1007/978-981-15-7090-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7090-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7089-6

  • Online ISBN: 978-981-15-7090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics