Skip to main content

Die and Package Level Thermal and Thermal/Moisture Stresses in 3D Packaging: Modeling and Characterization

  • Chapter
  • First Online:
3D Microelectronic Packaging

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 57))

Abstract

3D packaging employing through-silicon vias (TSVs) to connect multiple stacked dies/chips has great potential to achieve high performance and high capacity with low cost and low energy consumption. However, crucial reliability issues often arise in 3D integrated circuits (ICs) packaging due to high thermal stress and moisture stress at both die and package level. In this chapter, TSV-related reliability issues such as the measurement of thermal stress in TSV, the effect of thermal stress on carrier mobility and keep-out zone, thermal stress induced via extrusion are illustrated. At the package level, various analytical methods for thermal stress-induced warpage in multilayered structures are reviewed. The state-of-the-art approaches for warpage control are presented and validated by experimental testing and numerical modeling. Finally, to incorporate moisture stress that comprehends both hygroscopic stress and the pressure of water vapor, a theoretical framework is provided based on damage micromechanics and the effective stress concept. Some case studies are provided to understand the effect of moisture and vapor pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α Cu :

CTE of copper

α si :

CTE of silicon

β :

Coefficient of hygroscopic swelling

σ θ :

Circumferential stress

σ r :

Radial stress

σ rz :

Shear stress in rz plane

σ z :

Normal stress in z direction

σ T :

Mismatch thermal stress

Δω 3 :

Frequency shift of the longitudinal Raman mode

ΔH r :

Residual via extrusion

ΔT :

Thermal loading

ΔT y :

Critical thermal load for plastic yielding

ε c :

Hygroscopic strain

ε p :

Vapor pressure-induced strain

ε T :

Thermal strain

\( {\overline{\varepsilon}}_{\mathrm{T}} \) :

Average thermal strain

ϕ :

Porosity

\( \overset{.}{\phi } \) :

Porosity growth rate

γ e :

The rate of elastic extrusion

γ p :

The rate of plastic extrusion

η :

Generalized Poisson’s ratio

φ :

Normalized concentration or activity

κ :

Curvature

κ app :

Applied external curvature

κ nat :

Natural bending-induced curvature

ν :

Poisson’s ratio

π 11, π 12, π 44 :

Piezoresistance coefficients

ρ a :

Apparent moisture density

ρ g :

Density of saturated water vapor

a :

Via radius

A :

Geometry factor for calculating thermal stress in multilayered structure

C sat :

Saturated moisture concentration

d :

Via diameter

D :

Moisture diffusivity

D T :

Thermal diffusivity

E :

Young’s modulus

e :

Total volumetric strain

G and λ :

Lame’s elastic constants

H :

Via depth

h b :

Bending axis

h i :

Top surface coordinate

h m :

Midpoint coordinate

k P :

Factor for hydrostatic pressure gradient-driven diffusion

k T :

Factor for thermal gradient-driven diffusion

P :

Hydrostatic pressure

p :

Partial water vapor pressure

p amb :

Ambient partial water vapor pressure

p g :

Saturated water vapor pressure

Q :

Activation energy for moisture diffusivity

S :

Solubility

T m :

Maximum temperature during thermal cycling

T R :

Room temperature

T ref :

Stress-free temperature

u i :

Displacement vector

w :

Wetness

W :

Warpage

X i :

Body force vector

References

  1. Z. Wang, J. Microelectromech. Syst. 24, 1211 (2015)

    Article  Google Scholar 

  2. J.U. Knickerbocker et al., IBM J. Res. Dev. 52, 553 (2008)

    Article  Google Scholar 

  3. P. Garrou, C. Bower, P. Ramm, Handbook of 3D Integration (Wiley-VCH, Germany, 2008)

    Google Scholar 

  4. M. Jung, J. Mitra, D.Z. Pan, S.K. Lim, Commun. ACM 57, 107 (2014)

    Article  Google Scholar 

  5. JEDEC-JEP158, (JEDEC Solid State Technology Association, 2009)

    Google Scholar 

  6. S.W. Yoon, J.H. Ku, F. Carson, in SEMICON Korea 2010 (Seoul, Korean, 2010)

    Google Scholar 

  7. K.N. Tu, Microelectron. Reliab. 51, 517 (2011)

    Article  Google Scholar 

  8. C.-H. Liu, J.-L. Tsai, C. Hung-Hsien, C.-L. Lu, S.-C. Chen, in IEEE 64th Electronic Components and Technology Conference, 2014, p. 1628

    Google Scholar 

  9. K. Sakuma et al., in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 647

    Google Scholar 

  10. L. Mirkarimi, R. Zhang, A. Agrawal, H. Shaba, B.-S. Lee, R. Katkar, E. Chau, S. Arkalgud, Analytical and Experimental Studies of 2.5D Silicon Interposer Warpage: Impact of Assembly Sequences, Materials Selection and Process Parameters. Paper presented at 11th International Wafer Level Packaging Conference, San Jose, CA, 2014

    Google Scholar 

  11. C.-H. Liu, Y.-H. Liao, W.-T. Chen, C.-L. Lu, S.-C. Chen, in IEEE 65th Electronic Components and Technology Conference (ECTC), 2015, p. 1502

    Google Scholar 

  12. K. Sakuma et al., in IEEE 65th Electronic Components and Technology Conference (ECTC), 2015, p. 318

    Google Scholar 

  13. S.Y. Yang, W.-S. Kwon, S.-B. Lee, Microelectron. Reliab. 52, 718 (2012)

    Article  Google Scholar 

  14. X.J. Fan, E. Suhir, Moisture Sensitivity of Plastic Packages of IC Devices (Springer, New York, 2010)

    Book  Google Scholar 

  15. X.J. Fan, T.B. Lim, in ASME International Mechanical Engineering Congress and Exposition, IMECE/EPE-14, 1999

    Google Scholar 

  16. J. Zhou, T.Y. Tee, X.J. Fan, in Moisture Sensitivity of Plastic Packages of IC Devices (Springer, Berlin, 2010), p. 153

    Google Scholar 

  17. X.J. Fan, J.-H. Zhao, in 12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2011, p. 1

    Google Scholar 

  18. X.Q. Shi, Y.L. Zhang, Z. Wei, X.J. Fan, IEEE Trans. Compon. Packag. Technol. 31, 94 (2008)

    Article  Google Scholar 

  19. M.N. Kitano, A. Nishimura, S. Kawai, in Proc. IRPS, 1988, p. 90

    Google Scholar 

  20. C.G. Shirley, IEEE Trans. Device Mater. Reliab. 14, 426 (2014)

    Article  Google Scholar 

  21. B. Xie, X.Q. Shi, X.J. Fan, in Proceedings of the 57th Electronic Components and Technology Conference, 2007, p. 242

    Google Scholar 

  22. B. Xie, X.J. Fan, X. Shi, H. Ding, J. Electron. Packag. 131, 031011 (2009)

    Article  Google Scholar 

  23. B. Xie, X.J. Fan, X. Shi, H. Ding, J. Electron. Packag. 131, 031010 (2009)

    Article  Google Scholar 

  24. E.H. Wong, Y.C. Teo, T.B. Lim, in Proceedings of the Electronic Components and Technology Conference, 1998, p. 1372

    Google Scholar 

  25. S. Liu, Y. Mei, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 18, 634 (1995)

    Article  Google Scholar 

  26. X.J. Fan, J. Zhou, A. Chandra, in 58th Electronic Components and Technology Conference, 2008, p. 1054

    Google Scholar 

  27. X.J. Fan, G.Q. Zhang, W.D. van Driel, L.J. Ernst, IEEE Trans. Compon. Packag. Technol. 31, 252 (2008)

    Article  Google Scholar 

  28. J.V. Olmen et al., Microelectron. Eng. 88, 745 (2011)

    Article  Google Scholar 

  29. K. Sinwoo et al., in IEEE International 3D Systems Integration Conference (3DIC), 2011, p. 1

    Google Scholar 

  30. A. Mercha et al., in IEEE International Electron Devices Meeting (IEDM), 2010, p. 2.2.1

    Google Scholar 

  31. A.P. Karmarkar, X. Xu, V. Moroz, in IEEE International Reliability Physics Symposium, 2009, p. 682

    Google Scholar 

  32. K.H. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, P.S. Ho, in 59th Electronic Components and Technology Conference (ECTC), 2009, p. 630

    Google Scholar 

  33. S.-K. Ryu, K.-H. Lu, X. Zhang, J.-H. Im, P.S. Ho, R. Huang, IEEE Trans. Device Mater. Reliab. 11, 35 (2011)

    Article  Google Scholar 

  34. S.-K. Ryu, T. Jiang, K.H. Lu, J. Im, H.-Y. Son, K.-Y. Byun, R. Huang, P.S. Ho, Appl. Phys. Lett. 100, 041901 (2012)

    Article  Google Scholar 

  35. T. Jiang, S.-K. Ryu, Q. Zhao, J. Im, R. Huang, P.S. Ho, Microelectron. Reliab. 53, 53 (2013)

    Article  Google Scholar 

  36. I. De Wolf, in AIP Conference Proceedings, 2011, p. 138

    Google Scholar 

  37. S.-K. Ryu, Q. Zhao, M. Hecker, H.-Y. Son, K.-Y. Byun, J. Im, P.S. Ho, R. Huang, J. Appl. Phys. 111, 063513 (2012)

    Article  Google Scholar 

  38. W.S. Kwon, D.T. Alastair, K.H. Teo, S. Gao, T. Ueda, T. Ishigaki, K.T. Kang, W.S. Yoo, Appl. Phys. Lett. 98, 232106 (2011)

    Article  Google Scholar 

  39. T. Jiang, S.-K. Ryu, J. Im, H.-Y. Son, N.-S. Kim, R. Huang, P.S. Ho, in IEEE International Interconnect Technology Conference (IITC), 2013, p. 1

    Google Scholar 

  40. D. Gan, P.S. Ho, R. Huang, J. Leu, J. Maiz, T. Scherban, J. Appl. Phys. 97, 103531 (2005)

    Article  Google Scholar 

  41. T. Jiang, J. Im, R. Huang, P.S. Ho, MRS Bull. 40, 248 (2015)

    Google Scholar 

  42. W. De Ingrid, Semicond. Sci. Technol. 11, 139 (1996)

    Article  Google Scholar 

  43. D.J. Gardiner, Practical Raman Spectroscopy (Springer, New York, 1989)

    Book  Google Scholar 

  44. Y. Sun, S. Thompson, T. Nishida, Strain Effect in Semiconductors (Springer, New York, 2010)

    Book  Google Scholar 

  45. A. Mercha et al., in 2010 Symposium on VLSI Technology (VLSIT), 2010, p. 109

    Google Scholar 

  46. S. Cho et al., in International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011, p. 1

    Google Scholar 

  47. R. Suk-Kyu, L. Kuan-Hsun, J. Tengfei, J.-H. Im, H. Rui, P.S. Ho, IEEE Trans. Device Mater. Reliab. 12, 255 (2012)

    Article  Google Scholar 

  48. J.C. Lin et al., in International Electron Devices Meeting (IEDM), 2010, p. 2.1.1

    Google Scholar 

  49. T.C. Tsai, W.C. Tsao, W. Lin, C.L. Hsu, C.L. Lin, C.M. Hsu, J.F. Lin, C.C. Huang, J.Y. Wu, Microelectron. Eng. 92, 29 (2012)

    Article  Google Scholar 

  50. T. Jiang, C. Wu, J. Im, R. Huang, P.S. Ho, J. Microelectron. Electron. Packag. 12, 118 (2015)

    Article  Google Scholar 

  51. T. Jiang et al., Appl. Phys. Lett. 103, 211906 (2013)

    Article  Google Scholar 

  52. S.-K. Ryu, T. Jiang, J. Im, P.S. Ho, R. Huang, IEEE Trans. Device Mater. Reliab. 14, 318 (2014)

    Article  Google Scholar 

  53. J. De Messemaeker, O.V. Pedreira, B. Vandevelde, H. Philipsen, I. De Wolf, E. Beyne, K. Croes, in IEEE 63rd Electronic Components and Technology Conference (ECTC), 2013, p. 586

    Google Scholar 

  54. J. De Messemaeker, O.V. Pedreira, H. Philipsen, E. Beyne, I. De Wolf, T. Van der Donck, K. Croes, in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 613

    Google Scholar 

  55. D. Campos et al., in 2013 European Microelectronics Packaging Conference (EMPC), 2013, p. 1

    Google Scholar 

  56. R.L. Hubbard, P. Zappella, IEEE Transactions on Components. Packag. Manuf. Technol. 1, 1957 (2011)

    Article  Google Scholar 

  57. K.M. Jansen, B. Öztürk, IEEE Transactions on Components. Packag. Manuf. Technol. 3, 459 (2013)

    Article  Google Scholar 

  58. W. Lin, B. Baloglu, K. Stratton, in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 1401

    Google Scholar 

  59. W. Lin, S. Wen, A. Yoshida, J. Shin, in IEEE 62nd Electronic Components and Technology Conference (ECTC), 2012, p. 1406

    Google Scholar 

  60. A.-H. Liu, D.W. Wang, H.-M. Huang, M. Sun, M.-R. Lin, C. Zhong, S.-J. Hwang, H.-H. Lu, in IEEE 61st Electronic Components and Technology Conference (ECTC), 2011, p. 431

    Google Scholar 

  61. T.H. Wang, C.-I. Tsai, C.-C. Lee, Y.-S. Lai, Microelectron. Reliab. 53, 297 (2013)

    Article  Google Scholar 

  62. D.G. Yang, K.M.B. Jansen, L.J. Ernst, G.Q. Zhang, W.D. van Driel, H.J.L. Bressers, X.J. Fan, in Proceedings of the 54th Electronic Components and Technology Conference, 2004, p. 98

    Google Scholar 

  63. X.J. Fan, J. Zhou, G.Q. Zhang, Microelectron. Reliab. 44, 1967 (2004)

    Article  Google Scholar 

  64. K. Sakuma, E. Blackshear, K. Tunga, C. Lian, S. Li, M. Interrante, O. Mantilla, J.-W. Nah, in IEEE 63rd Electronic Components and Technology Conference (ECTC), 2013, p. 667

    Google Scholar 

  65. P.S. Huang, M.Y. Tsai, C.Y. Huang, P.C. Lin, L. Huang, M. Chang, S. Shih, J.P. Lin, in 2012 14th International Conference on Electronic Materials and Packaging (EMAP), 2012, p. 1

    Google Scholar 

  66. Y. Shen, L. Zhang, W.H. Zhu, J. Zhou, X.J. Fan, IEEE Transactions on Components, Packaging and Manufacturing Technology, doi:10.1109/TCPMT.2016.2592947, 2016

  67. A.N.V. da Silva, Dissertation, Universidade de Lisboa, 2010

    Google Scholar 

  68. Y. Wen, C. Basaran, J. Electron. Packag. 125, 134 (2003)

    Article  Google Scholar 

  69. S. Timoshenko, J. Opt. Soc. Am. 11, 233 (1925)

    Article  Google Scholar 

  70. E. Suhir, J. Appl. Mech. 53, 657 (1986)

    Article  Google Scholar 

  71. R.R. Valisetty, L.W. Rehfield, A theory for stress analysis of composite laminates. Paper presented at 4thAIAA/ASME/ASCE/AHS structures, structural dynamics and materials conference, Lake Tahoe, NV, 1983

    Google Scholar 

  72. X. Liu, M. Li, D.R. Mullen, J. Cline, S.K. Sitaraman, IEEE Trans. Device Mater. Reliab. 14, 512 (2014)

    Article  Google Scholar 

  73. A.A.O. Tay, T.Y. Lin, in Inter-Society Conference on Thermal Phenomena in Electronic Systems. I-THERM V, 1996, p. 67

    Google Scholar 

  74. A.A.O. Tay, T.Y. Lin, in The Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1998, p. 179

    Google Scholar 

  75. J.E. Galloway, B.M. Miles, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 20, 274 (1997)

    Article  Google Scholar 

  76. X.J. Fan, Mechanics of moisture for polymers: fundamental concepts and model study. Paper presented at EuroSimE 2008—international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and micro-systems, 2008

    Google Scholar 

  77. T.Y. Tee, Z. Zhong, Microelectron. Reliab. 44, 105 (2004)

    Article  Google Scholar 

  78. L. Chen, J. Adams, H.-W. Chu, X.J. Fan, J. Mater, Sci. Mater. Electron. 27(1), 481–488 (2015)

    Article  Google Scholar 

  79. L. Chen, H.-W. Chu, X.J. Fan, J. Polym. Sci. B 53, 1440 (2015)

    Article  Google Scholar 

  80. X.J. Fan, S.W.R. Lee, Q. Han, Microelectron. Reliab. 49, 861 (2009)

    Article  Google Scholar 

  81. X.J. Fan, J. Zhou, G.Q. Zhang, A. Chandra, in Moisture Sensitivity of Plastic Packages of IC Devices, ed. by X.J. Fan, E. Suhir (Springer, Berlin, 2010), p. 279

    Google Scholar 

  82. M.D. Placette, X. Fan, J.-H. Zhao, D. Edwards, Microelectron. Reliab. 52, 1401 (2012)

    Article  Google Scholar 

  83. W.D. van Driel, M. van Gils, X.J. Fan, G.Q. Zhang, L.J. Ernst, IEEE Trans. Compon. Packag. Technol. 31, 260 (2008)

    Article  Google Scholar 

  84. X.J. Fan, G.Q. Zhang, W.D. van Driel, L.J. Ernst, in Proceedings of the Electronic Components and Technology Conference, 2003, p. 733

    Google Scholar 

  85. F. Le, S.W.R. Lee, K.M. Lau, C.P. Yue, J.K.O. Sin, P.K.T. Mok, K. Wing-Hung, C. Hoi Wai, in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 919

    Google Scholar 

  86. J. Crank, The Mathematics of Diffusion (Oxford University Press, Oxford, 1956)

    MATH  Google Scholar 

  87. S.R. DeGroot, P. Mazur, Non Equilibrium Thermodynamics (North Holland Publishing, North Holland, Amsterdam, 1962)

    Google Scholar 

  88. P. Sofronis, R.M. McMeeking, J. Mech. Phys. Solids 37, 317 (1989)

    Article  Google Scholar 

  89. X.J. Fan, J. Zhou, G.Q. Zhang, L.J. Ernst, J. Electron. Packag. 127, 262 (2005)

    Article  Google Scholar 

  90. Y.C. Fung, Foundations of Solid Mechanics (Prentice Hall, Upper Saddle River, NJ, 1965)

    Google Scholar 

Download references

Acknowledgment

The editors would like to thank Zhiheng Huang from Sun Yat-sen University in China for his critical review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, L., Jiang, T., Fan, X. (2017). Die and Package Level Thermal and Thermal/Moisture Stresses in 3D Packaging: Modeling and Characterization. In: Li, Y., Goyal, D. (eds) 3D Microelectronic Packaging. Springer Series in Advanced Microelectronics, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-44586-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44586-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44584-7

  • Online ISBN: 978-3-319-44586-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics