Skip to main content

Progress in Cardiorespiratory Ischemia-Reperfusion Injury

  • Chapter
  • First Online:
Sudden Death
  • 572 Accesses

Abstract

Sudden cardiac arrest (SCA) is a common cause of death in emergency departments, although SCA treatment has been improved with the improvement of medical and health care, the improvement of cardiopulmonary resuscitation technology, and the use of drugs and other therapeutic measures. However, the survival and discharge rate is still not optimistic. Post-cardiac arrest syndrome (PCAS) is a complex combination of pathophysiological processes, consisting of post-cardiac arrest brain injury, post-cardiac arrest myocardial dysfunction, systemic ischemia-reperfusion response, and persistent precipitating pathology. This part will focus on the latest progress of post-resuscitation myocardial dysfunction, mainly focusing on the mechanism of ischemia-reperfusion injury, to provide basis for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattiazzi A, Argenziano M, Aguilar-Sanchez Y, Mazzocchi G, Escobar AL. Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts. J Mol Cell Cardiol. 2015;79:69–78.

    Article  CAS  PubMed  Google Scholar 

  2. Nascimento AM, Lima EM, Brasil GA, et al. Serca2a and Na(+)/Ca(2+) exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid. Toxicol Appl Pharmacol. 2016;301:22–30.

    Article  PubMed  Google Scholar 

  3. Rusciano MR, Sommariva E, Douin-Echinard V, Ciccarelli M, Poggio P, Maione AS. CaMKII activity in the inflammatory response of cardiac diseases. Int J Mol Sci. 2019;20(18):4374.

    Article  CAS  PubMed Central  Google Scholar 

  4. Tribulova N, Seki S, Radosinska J, et al. Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death. Can J Physiol Pharmacol. 2009;87(12):1120–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu T, Takimoto E, Dimaano VL, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res. 2014;115(1):44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bondarenko A, Svichar N, Chesler M. Role of Na+-H+ and Na+-Ca2+ exchange in hypoxia-related acute astrocyte death. Glia. 2005;49(1):143–52.

    Article  PubMed  Google Scholar 

  7. Ayoub IM, Kolarova J, Yi Z, et al. Sodium-hydrogen exchange inhibition during ventricular fibrillation: beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability. Circulation. 2003;107(13):1804–9.

    Article  PubMed  Google Scholar 

  8. Gazmuri RJ, Radhakrishnan J, Ayoub IM. Sodium-Hydrogen Exchanger Isoform-1 inhibition: a promising pharmacological intervention for resuscitation from cardiac arrest. Molecules. 2019;24(9):1765.

    Article  CAS  PubMed Central  Google Scholar 

  9. White C, Ambrose E, Muller A, et al. Impact of reperfusion calcium and pH on the resuscitation of hearts donated after circulatory death. Ann Thorac Surg. 2017;103(1):122–30.

    Article  PubMed  Google Scholar 

  10. Ford KL, Moorhouse EL, Bortolozzi M, Richards MA, Swietach P, Vaughan-Jones RD. Regional acidosis locally inhibits but remotely stimulates Ca2+ waves in ventricular myocytes. Cardiovasc Res. 2017;113(8):984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang X, Huang Z, Zhu J, et al. Ultrastructural evidence of mitochondrial abnormalities in postresuscitation myocardial dysfunction. Resuscitation. 2012;83(3):386–94.

    Article  CAS  PubMed  Google Scholar 

  12. Xu W, Fu Y, Jiang L, et al. Cardiopulmonary resuscitation ameliorates myocardial mitochondrial dysfunction in a cardiac arrest rat model. Am J Emerg Med. 2020;38:65–72.

    Article  PubMed  Google Scholar 

  13. Donnino MW, Liu X, Andersen LW, et al. Characterization of mitochondrial injury after cardiac arrest (COMICA). Resuscitation. 2017;113:56–62.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bernardi P, Di Lisa F, Fogolari F, Lippe G. From ATP to PTP and Back: a dual function for the mitochondrial ATP synthase. Circ Res. 2015;116(11):1850–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Vuuren D, Lochner A. Ischaemic postconditioning: from bench to bedside. Cardiovasc J Afr. 2008;19(6):311–20.

    PubMed  PubMed Central  Google Scholar 

  16. Alam MR, Baetz D, Ovize M. Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol. 2015;78:80–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cour M, Gomez L, Mewton N, Ovize M, Argaud L. Postconditioning: from the bench to bedside. J Cardiovasc Pharmacol Ther. 2011;16(2):117–30.

    Article  CAS  PubMed  Google Scholar 

  18. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592–607.

    Article  CAS  PubMed  Google Scholar 

  19. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192(7):1001–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patil KD, Halperin HR, Becker LB. Cardiac arrest. Circ Res. 2015;116(12):2041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang K, Wen S, Jiao J, et al. IL-21 promotes myocardial ischaemia/reperfusion injury through the modulation of neutrophil infiltration. Br J Pharmacol. 2018;175(8):1329–43.

    Article  CAS  PubMed  Google Scholar 

  22. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364(7):656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laubach VE, Sharma AK. Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Transplant. 2016;21(3):246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li RJ, Ji WQ, Pang JJ, Wang JL, Chen YG, Zhang Y. Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome. Tohoku J Exp Med. 2013;229(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  25. Eisenhardt SU, Weiss JB, Smolka C, et al. MicroRNA-155 aggravates ischemia-reperfusion injury by modulation of inflammatory cell recruitment and the respiratory oxidative burst. Basic Res Cardiol. 2015;110(3):32.

    Article  PubMed  Google Scholar 

  26. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006;1757(5–6):509–17.

    Article  CAS  PubMed  Google Scholar 

  27. Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26–33.

    Article  CAS  PubMed  Google Scholar 

  28. Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies. Life Sci. 2016;165:43–55.

    Article  CAS  PubMed  Google Scholar 

  29. Macmillan-Crow LA, Cruthirds DL. Invited review: manganese superoxide dismutase in disease. Free Radic Res. 2001;34(4):325–36.

    Article  CAS  PubMed  Google Scholar 

  30. García-Dorado D. Myocardial reperfusion injury: a new view. Cardiovasc Res. 2004;61(3):363–4.

    Article  PubMed  Google Scholar 

  31. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009;361(16):1570–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106(3):360–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Conus S, Simon HU. Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol. 2008;76(11):1374–82.

    Article  CAS  PubMed  Google Scholar 

  34. Liu XM, Yang ZM, Liu XK. Fas/FasL induces myocardial cell apoptosis in myocardial ischemia-reperfusion rat model. Eur Rev Med Pharmacol Sci. 2017;21(12):2913–8.

    PubMed  Google Scholar 

  35. Chekeni FB, Elliott MR, Sandilos JK, et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature. 2010;467(7317):863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu J, Shen Y, Liu LJ, Qian HY, Zhu CL. Combining epinephrine and Esmolol attenuates excessive autophagy and Mitophagy in rat Cardiomyocytes after cardiac arrest. J Cardiovasc Pharmacol. 2015;66(5):449–56.

    Article  CAS  PubMed  Google Scholar 

  37. Wei H, Yin M, Lu Y, et al. Mild hypothermia improves neurological outcome in mice after cardiopulmonary resuscitation through Silent Information Regulator 1-actviated autophagy. Cell Death Discov. 2019;5:129.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xue D, Wang Q, Chen Z, et al. 3-Anhydro-6-hydroxy-ophiobolin A, a fungal sesterterpene from Bipolaris oryzae induced autophagy and promoted the degradation of α-synuclein in PC12 cells. Bioorg Med Chem Lett. 2015;25(7):1464–70.

    Article  CAS  PubMed  Google Scholar 

  39. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99(4):1765–817.

    Article  PubMed  Google Scholar 

  40. Liu LF, Qian ZH, Qin Q, et al. Effect of melatonin on oncosis of myocardial cells in the myocardial ischemia/reperfusion injury rat and the role of the mitochondrial permeability transition pore. Genet Mol Res. 2015;14(3):7481–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhong H, Song R, Pang Q, et al. Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis. 2018;9(10):932.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meyer AS, Ostrowski SR, Kjaergaard J, Johansson PI, Hassager C. Endothelial Dysfunction in Resuscitated Cardiac Arrest (ENDO-RCA): safety and efficacy of low-dose prostacyclin administration and blood pressure target in addition to standard therapy, as compared to standard therapy alone, in post-cardiac arrest syndrome patients: study protocol for a randomized controlled trial. Trials. 2016;17:378.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Asai M, Takeuchi K, Saotome M, et al. Extracellular acidosis suppresses endothelial function by inhibiting store-operated Ca2+ entry via non-selective cation channels. Cardiovasc Res. 2009;83(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Q, He GW, Underwood MJ, Yu CM. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am J Transl Res. 2016;8(2):765–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bro-Jeppesen J, Johansson PI, Kjaergaard J, et al. Level of systemic inflammation and endothelial injury is associated with cardiovascular dysfunction and vasopressor support in post-cardiac arrest patients. Resuscitation. 2017;121:179–86.

    Article  PubMed  Google Scholar 

  48. Jones WK, Brown M, Ren X, He S, McGuinness M. NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol. 2003;3(3):229–54.

    Article  CAS  PubMed  Google Scholar 

  49. Reyes LA, Boslett J, Varadharaj S, et al. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart. Proc Natl Acad Sci U S A. 2015;112(37):11648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Troelsen TT, Granfeldt A, Secher N, Tonnesen EK, Simonsen U. Impaired NO-mediated vasodilatation in rat coronary arteries after asphyxial cardiac arrest. Acta Anaesthesiol Scand. 2015;59(5):654–67.

    Article  CAS  PubMed  Google Scholar 

  51. Fink K, Schwarz M, Feldbrugge L, et al. Severe endothelial injury and subsequent repair in patients after successful cardiopulmonary resuscitation. Crit Care. 2010;14(3):R104.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Morgan RW, Sutton RM, Karlsson M, et al. Pulmonary vasodilator therapy in shock-associated cardiac arrest. Am J Respir Crit Care Med. 2018;197(7):905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu X, Ge L, Niu L, Lian X, Ma H, Pang L. The dual role of inducible nitric oxide synthase in myocardial ischemia/reperfusion injury: friend or foe? Oxid Med Cell Longev. 2018;2018:8364848.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mendez-Carmona N, Wyss RK, Arnold M, et al. Differential effects of ischemia/reperfusion on endothelial function and contractility in donation after circulatory death. J Heart Lung Transplant. 2019;38(7):767–77.

    Article  PubMed  Google Scholar 

  55. Zhang H, Wu Q, Wan Z, Cao Y, Zeng Z. Preconditioning but not postconditioning treatment with resveratrol substantially ameliorates postresuscitation myocardial dysfunction through the PI3K/Akt signaling pathway. Mol Med Rep. 2019;20(2):1250–8.

    PubMed  PubMed Central  Google Scholar 

  56. Wang G, Zhang Q, Yuan W, Wu J, Li C. Sildenafil protects against myocardial ischemia-reperfusion injury following cardiac arrest in a porcine model: possible role of the renin-angiotensin system. Int J Mol Sci. 2015;16(11):27015–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xue L, Yang F, Han Z, et al. ALDH2 mediates the dose-response protection of chronic ethanol against endothelial senescence through SIRT1/p53 pathway. Biochem Biophys Res Commun. 2018;504(4):777–83.

    Article  CAS  PubMed  Google Scholar 

  58. Schanze N, Bode C, Duerschmied D. Platelet contributions to myocardial ischemia/reperfusion injury. Front Immunol. 2019;10:1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    Article  CAS  PubMed  Google Scholar 

  60. Mezger M, Nording H, Sauter R, et al. Platelets and immune responses during thromboinflammation. Front Immunol. 2019;10:1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009;15(4):384–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  63. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  CAS  PubMed  Google Scholar 

  64. Hayashida K, Miyazaki Y, Yu B, et al. Depletion of vascular nitric oxide contributes to poor outcomes after cardiac arrest. Am J Respir Crit Care Med. 2019;199(10):1288–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asmussen A, Fink K, Busch HJ, et al. Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation. Crit Care. 2016;20(1):170.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Arslan F, Houtgraaf JH, Keogh B, et al. Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ Cardiovasc Interv. 2012;5(2):279–87.

    Article  CAS  PubMed  Google Scholar 

  67. Bergt S, Guter A, Grub A, et al. Impact of toll-like receptor 2 deficiency on survival and neurological function after cardiac arrest: a murine model of cardiopulmonary resuscitation. PLoS One. 2013;8(9):e74944.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen C, Feng Y, Zou L, et al. Role of extracellular RNA and TLR3-Trif signaling in myocardial ischemia-reperfusion injury. J Am Heart Assoc. 2014;3(1):e000683.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang XY, Chen C, Zhang YB, et al. Role of toll-like receptor 3 in lung ischemia-reperfusion injury. Shock. 2016;46(4):405–11.

    Article  CAS  PubMed  Google Scholar 

  70. Jiang X, Kong B, Shuai W, et al. Loss of MD1 exacerbates myocardial ischemia/reperfusion injury and susceptibility to ventricular arrhythmia. Eur J Pharmacol. 2019;844:79–86.

    Article  CAS  PubMed  Google Scholar 

  71. Podolec J, Trabka-Zawicki A, Badacz R, et al. Chemokine RANTES and IL-1beta in mild therapeutic hypothermia-treated patients after out-of-hospital sudden cardiac arrest. Postepy Kardiol Interwencyjnej. 2019;15(1):98–106.

    PubMed  PubMed Central  Google Scholar 

  72. Qi Z, An L, Liu B, et al. Patients with out-of-hospital cardiac arrest show decreased human leucocyte antigen-DR expression on monocytes and B and T lymphocytes after return of spontaneous circulation. Scand J Immunol. 2018;88(4):e12707.

    Article  PubMed  Google Scholar 

  73. El-Menyar AA. The resuscitation outcome: revisit the story of the stony heart. Chest. 2005;128(4):2835–46.

    Article  PubMed  Google Scholar 

  74. Tulaimat A, Patel A, Wisniewski M, Gueret R. The validity and reliability of the clinical assessment of increased work of breathing in acutely ill patients. J Crit Care. 2016;34:111–5.

    Article  PubMed  Google Scholar 

  75. Bro-Jeppesen J, Johansson PI, Hassager C, et al. Endothelial activation/injury and associations with severity of post-cardiac arrest syndrome and mortality after out-of-hospital cardiac arrest. Resuscitation. 2016;107:71–9.

    Article  PubMed  Google Scholar 

  76. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19:26.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li XX, Zhao L, Chang Y, et al. Ezetimibe prevents myocardial remodeling in an obese rat model by inhibiting inflammation. Acta Biochim Pol. 2018;65(3):465–70.

    Article  CAS  PubMed  Google Scholar 

  78. Jou C, Shah R, Figueroa A, Patel JK. The role of inflammatory cytokines in cardiac arrest. J Intensive Care Med. 2020;35(3):219–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, C., Yuan, Q., Xu, F. (2021). Progress in Cardiorespiratory Ischemia-Reperfusion Injury. In: Zhu, H. (eds) Sudden Death. Springer, Singapore. https://doi.org/10.1007/978-981-15-7002-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7002-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7001-8

  • Online ISBN: 978-981-15-7002-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics