Skip to main content

Endophytic Microbiomes and Their Plant Growth-Promoting Attributes for Plant Health

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Abstract

Endophytes reside within internal tissues of living plants without causing any harm to the host. The influence of these microbial communities on plant growth, yield, stress, and disease resistance, has been identified as potential research priorities in agriculture. In this chapter, we aim to explore the diverse host–endophyte interactions for plant growth promotion and health. Initially, the colonization of endophytes in specific plant tissues is discussed along with their mechanism of entry, habitat selection, response to stimuli, and evasion of the plant immunity. Endophytic microbes promote plant growth through different types of direct and indirect mechanisms. Plant growth-promoting endophytes (PGPE) play a vital role in phytohormone production, nutrient acquisition, nitrogen fixation, and solubilization of minerals. Further, indirect mechanisms (like suppression of plant pathogens by producing volatile organic compounds, antagonizing agents, and quorum quenchers) are also discussed in detail. Siderophores production and the secretion of different hydrolytic enzymes like chitinases, glucanases, and proteases also help in the induction of systemic resistance and protection of the host plants. Bioactive metabolites derived from endophytes serve as excellent therapeutic agents and have potential applications in agriculture, cosmetics, pharmaceutical, and food industries. Hereby, this chapter highlights the scientific rationale behind using endophytic microbiomes as potential biofertilizers, biopesticides, and biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5:111–121

    Article  PubMed  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araujo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1)

    Google Scholar 

  • Baldi BG, Maher BR, Slovin JP, Choen JD (1991) Stable isotope labeling, in vivo, of d- and l-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol 95:1203–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals 14:33–42

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Basnayake WVS, Birch RG (1995) A gene from Alcaligenes denitrificans that confers albicidin resistance by reversible antibiotic binding. Microbiology 141:551–560

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51:945–953

    CAS  PubMed  Google Scholar 

  • Bothwell TH (1995) Overview and mechanisms of iron regulation. Nutr Rev 53:237–245

    Article  CAS  PubMed  Google Scholar 

  • Brock AK, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670

    Article  CAS  PubMed  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  CAS  PubMed  Google Scholar 

  • Chung JH, Song GC, Ryu CM (2016) Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol 90:677–687

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cursino L, Mattos SV, Azevedo V, Galarza F, Bucker DH, Chartone-Souza E, Nascimento A (2000) Capacity of mercury volatilization by mer (from Escherichia coli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli. Sci Total Environ 261:109–113

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TCJ (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    Article  CAS  PubMed  Google Scholar 

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown-gall tumors on tomato plants. J Appl Microbiol 110:341–352

    Article  CAS  PubMed  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Dobbelare S, Vanderleydern J, Okon Y (2003) Plant-growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Duffy BK (2001) Competition. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. John Wiley & Sons, Inc., New York, N.Y, pp 243–244

    Google Scholar 

  • Ecker DJ, Loomis LD, Cass ME, Raymond KN (1988) Substituted complexes of enterobactin and synthetic analogues as probes the ferric-enterobactin receptor in Escheichia coli. J Am Chem Soc 110:2457–2464

    Article  CAS  Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031

    Article  CAS  PubMed  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Giller KE, Merckx R (2003) Exploring the boundaries of N2-fixation in cereals and grasses: an hypothetical and experimental framework. Symbiosis 35:3–17

    CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res J 169:30–39

    Article  CAS  Google Scholar 

  • Godstime OC, Enwa FO, Augustina JO, Christopher EO (2014) Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens– a review. J Pharm Chem Biol Sci 2:77–85

    Google Scholar 

  • Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, Liu Q, Zhao M, Tang C (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2009) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–472

    Article  CAS  Google Scholar 

  • Henning K, Villforth F (1940) Experimentelle untersuchungen zur frage der bacteriesymbiose in ho¨heren pflanzen und ihre beeinflussung durch ‘Leitemente’. Biochem Z 305:299–309

    Google Scholar 

  • van der Hiejden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Huddedar SB, Shete AM, Tilekar JN, Gore SD, Dhavale DD, Chopade BA (2002) Isolation, characterization and plasmid pUPI126-mediated indole-3-acetic acid production in Acinetobacter strains from rhizosphere of wheat. Appl Biochem Biotechnol 102–103:21–39

    Article  PubMed  Google Scholar 

  • Huschka H, Jalal MAF, van der Helm D, Winkelmann G (1986) Molecular recognition of siderophores in fungi: role of iron-surrounding N-acyl residues and the peptide backbone during membrane transport in Neurospora crassa. J Bacteriol 167:1020–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17:1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Bio 1:291–309

    Article  Google Scholar 

  • Khan AL, Shahzad R, Al-Harrasi A, Lee IJ (2017) Endophytic microbes: a resource for producing extracellular enzymes. In: Maheshwari D, Annapurna K (eds) Endophytes: crop productivity and protection. Sustainable development and biodiversity, vol 16. Springer, Cham. Copyright © 2017 Springer International Publishing AG

    Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, NY, pp 199–233

    Google Scholar 

  • Koskimäki JJ, Pirttilä AM, Ihantola EL, Halonen O, Frank AC (2015) The intracellular scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins. mBio 6(2):e00039–e00015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in White biotechnology through Fungi, Perspective for value-added products and environments, vol 2. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V et al (2020a) Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 157–176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Lamshöft M, Sezgin S, Spiteller M, Kayser O (2014) Quorum quenching is an antivirulence strategy employed by endophytic bacteria. Appl Microbiol Biotechnol 98:7173–7183

    Article  CAS  PubMed  Google Scholar 

  • Latha P, Karthikeyan M, Rajeswari E (2019) Endophytic bacteria: prospects and applications for the plant disease management. In: Ansari R, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore

    Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Article  CAS  Google Scholar 

  • Leinhos V (1994) Effects of pH and glucose on auxin production by phosphate-solubilizing rhizobacteria in vitro. Microbiol Res 194:135–138

    Article  Google Scholar 

  • Leo VV, Passari AK, Joshi JB, Mishra VK, Uthandi S, Ramesh N, Gupta VK, Saikia R, Sonawane VC, Singh BP (2016) A novel triculture system (CC3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00447

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552

    Article  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants e effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • de Matos NE, Vinagre F, Masuda HP, Vargas C, de Pádua VLM, da Silva FR, dos Santos RV, Baldani JI, Gomes Ferreira PC, Hemerley AS (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet Mol Biol 24:199–206

    Article  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, Functional annotation and future challenges, vol 2. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

    Chapter  Google Scholar 

  • Newman KL, Chatterjee S, Ho KA, Lindow SE (2008) Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Mol Plant-Microbe Interact 21:326–334

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivares F, James E, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:723–737

    Article  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Perotti R (1926) On the limits of biological inquiry on soil science. Proc Int Soc Soil Sci 2:146–161

    Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus factor of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller MJ (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis 69:123–129

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Prasad MNV, Sandhya S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in White biotechnology through Fungi, Diversity and enzymes perspectives, vol 1. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN et al (2020a) Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Kumar A, EKR (eds) Microbial endophytes. Woodhead Publishing, Cambridge, MA, pp 273–305. https://doi.org/10.1016/B978-0-12-819654-0.00011-9

    Chapter  Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India B. https://doi.org/10.1007/s40011-020-01168-0

  • Rana KL, Kour D, Yadav N, Yadav AN (2020c) Endophytic microbes in nanotechnology: current development, and potential biotechnology applications. In: Kumar A, Singh VK (eds) Microbial endophytes. Woodhead Publishing, USA, pp 231–262. https://doi.org/10.1016/B978-0-12-818734-0.00010-3

    Chapter  Google Scholar 

  • Rao NS (1986) The rhizosphere. Oxford and IBH, New Delhi, pp 50–80

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, De-Ley J (1993) Azoarcus gen. Nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Evol Microbiol 43:574–584

    Google Scholar 

  • Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555

    Article  CAS  PubMed  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102:463–472

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Ma del C, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res J 183:92–99

    Article  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Sharaff MS, Subrahmanyam G, Kumar A, Yadav AN (2020) Mechanistic understanding of root-microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 61–84. https://doi.org/10.1016/B978-0-12-820526-6.00005-1

    Chapter  Google Scholar 

  • Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B (2015) Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. mBio 6:e00621–e00615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheoran N, Valiya Nadakkakath A, Munjal V, Kundu A, Subaharan K, Venugopal V, Rajamma S, Eapen SJ, Kumar A (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199-200:314–320

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020a) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Singh B, Boukhris I, Pragya KV, Yadav AN, Farhat-Khemakhem A et al (2020b) Contribution of microbial phytases to the improvement of plant growth and nutrition: a review. Pedosphere 30:295–313. https://doi.org/10.1016/S1002-0160(20)60010-8

    Article  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Barnes C, Xu J, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad of Sci USA 97:10691–10696

    Article  CAS  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) In: Bacon CW, White JF Jr (eds) An overview of endophytic microbes: Endophytism defined. M. Dekker, Inc, New York, pp 3–5

    Google Scholar 

  • Straub D, Rothballer M, Hartmann A, Ludewig U (2013) The genome of the endophytic bacterium H. frisingense GSF30(T) identifies diverse strategies in the Herbaspirillum genus to interact with plants. Front Microbiol 4:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clément C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum mill.) by activation of their antioxidant capacity. Mol Plant-Microbe Interact 28:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Research perspectives, vol 1. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol and Evol 22:120–126

    Article  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important Fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-030-45971-0_8

    Chapter  Google Scholar 

  • Toyoda H, Utsumi R (1991) Method for the prevention of Fusarium diseases and microorganisms used for the same. U.S. patent 4988586

    Google Scholar 

  • Traving SJ, Thygesen UH, Riemann L, Stedmon CA (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81:7385–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet J-B, Francez A-J, Fitter AH, Young JPW (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Natl Acad of Sci USA 104:16970–16975

    Article  CAS  Google Scholar 

  • Vijayalakshmi R, Kairunnisa K, Sivvaswamy SN, Dharan SS, Natarajan S (2016) Enzyme production and antimicrobial activity of endophytic bacteria isolated from medicinal plants. Indian J Sci Technol 9(14)

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Barak T, Vinocur B, Shoseyov O, Altman A (2003) Abiotic resistance and chaperones: possible physiological role of SP1, a stable and stabilizing protein from Populus. In: Vasil IK (ed) Plant Biotechnology 2000 and Beyond. Dordrecht, Kluwer, pp 439–443

    Chapter  Google Scholar 

  • Webber J (1981) A natural control of Dutch elm disease. Nature (London) 292:449–451

    Article  Google Scholar 

  • de Werra P, Pechy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microb 75:4162–4174

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

    Chapter  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, Gerhardt H, Pianet I, Lammerhofer M, Berg G, Gross H, Raaijmakers JM (2015) The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE*1-1-14 is involved in pathogen suppression and root colonization. Mol Plant-Microbe Interact 28:800–810

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad of Sci USA 94:9984–9989

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Sougata Ghosh acknowledges the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India and Jawaharlal Nehru Centre for an Advanced Scientific Research, India for funding under the Post-doctoral Overseas Fellowship in Nano Science and Technology (Ref. JNC/AO/A.0610.1(4) 2019-2260 dated August 19, 2019).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Bhagwat, T., Webster, T.J. (2021). Endophytic Microbiomes and Their Plant Growth-Promoting Attributes for Plant Health. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_11

Download citation

Publish with us

Policies and ethics