Skip to main content

RRAM Device Characterizations and Modelling

  • Chapter
  • First Online:
Emerging Non-volatile Memory Technologies
  • 1437 Accesses

Abstract

Resistive random access memory (RRAM) is one of the most promising candidate for future nanoscale nonvolatile memory. Extensive research efforts have been carried out to facilitate practical use of RRAM as data storage system. However, further improvements, such as reducing the operation voltage and current, suppressing the device variability, etc., are still needed for the commercialization of RRAM. To further optimize the device performance, physical mechanism of resistive switching behavior must be understood and physical model should be developed. This chapter summarizes the current physical mechanisms, which provides an atom view of the resistive switching behavior. Then we will discuss the materials characterization used to identify the origins of switching behaviors, including the high-resolution X-ray photoelectron spectroscopy (XPS), electron energy loss spectrum (EELS), in situ transmission electron microscopy (TEM) and so on. After that, Monte Carlo simulation of the dynamic resistive switching processes is presented, allowing for correlating the observed switching characteristics with the microcosmic physical processes. Besides, compact model for spice simulation of RRAM based circuit is discussed. Finally, we will introduce the electrical characterization of RRAM, such as retention, endurance, RTN and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T.W. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33(9), 2669 (1962)

    Article  ADS  Google Scholar 

  2. J.F. Gibbons, W.E. Beadle, Switching properties of thin NiO films. Solid-State Electron. 7(11), 785 (1964)

    Article  ADS  Google Scholar 

  3. Y. Watanabe, J.G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, S.J. Wind, B, Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78(23), 3738 (2001)

    Article  ADS  Google Scholar 

  4. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77(1), 139 (2000)

    Article  ADS  Google Scholar 

  5. G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H. S. Kim, I.K. Yoo, U.-In. Chung, J.T. Moon, Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 587 (2004)

    Google Scholar 

  6. A. Rohde, B.J. Choi, D.S. Jeong, S. Choi, J.S. Zhao, C.S. Hwang, Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86(26), 262907 (2005)

    Google Scholar 

  7. Y.A. Lin, S.Y. Wang, D.Y. Lee, T.Y. Tseng, Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J. Electrochem. Soc. 155(8), H615 (2008)

    Article  Google Scholar 

  8. W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen, M.J. Tsai, Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92(2), 022110 (2008)

    Article  ADS  Google Scholar 

  9. X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, T.P. Ma, Resistive switching in CeOx films for nonvolatile memory application. IEEE Electr. Dev. Lett. 30(4), 334 (2009)

    Article  ADS  Google Scholar 

  10. H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, M.-J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 297 (2008)

    Google Scholar 

  11. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, M. Oshima, Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 293 (2008)

    Google Scholar 

  12. Y. Wu, B. Lee, H.P. Wong, Al2O3-based RRAM using atomic layer deposition (ALD) with 1-μA RESET current. IEEE Electr. Dev.Lett. 31(12), 1449 (2010)

    Article  ADS  Google Scholar 

  13. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories: Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25), 2632 (2009)

    Article  Google Scholar 

  14. B. Gao, J.F. Kang, Y.S. Chen, F.F. Zhang, B. Chen, P. Huang, L.F. Liu, X.Y. Liu, Y.Y. Wang, X.A Tran, Z.R. Wang, H.Y. Yu, A. Chin, Oxide-based RRAM: unified microscopic principle for both unipolar and bipolar switching. in Tech. Dig. IEEE Int. Electron Devices Meeting, p.417 (2011)

    Google Scholar 

  15. R. Valov, J.R. Waser, M.N. Jameson, Kozicki, Electrochemical metallization memories: Fundamentals, applications, prospects. Nanotechnology 22(25), 254003 (2011)

    Article  ADS  Google Scholar 

  16. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24(14), 1844 (2012)

    Article  Google Scholar 

  17. M. Terai, Y. Sakotsubo, S. Kotsuji, H. Hada, Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation. IEEE Electr. Dev. Lett. 31(3), 204 (2010)

    Article  ADS  Google Scholar 

  18. X.M. Guan, S.M. Yu, H.-S. Philip Wong, On the switching parameter variation of metal-oxide RRAM—Part I: Physical modeling and simulation methodology. IEEE Trans. Electr. Dev. 59(4), 1172 (2012)

    Google Scholar 

  19. L. Vandelli, A. Padovani, L. Larcher, G. Broglia, G. Ori, M. Montorsi, G. Bersuker P. Pavan, Comprehensive physical modeling of forming and switching operations in HfO2 RRAM devices. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 421 (2011)

    Google Scholar 

  20. P. Huang, B. Gao, B. Chen, F.F. Zhang, L. F. Liu, G. Du, J.F. Kang, X.Y. Liu, Stochastic simulation of forming, SET and RESET process for transition metal oxide-based resistive switching memory. In International Conference on Simulation of Semiconductor Processes and Devices, p. 312 (2012)

    Google Scholar 

  21. S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H.-S.P. Wong, A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25(12), 1774 (2013)

    Article  Google Scholar 

  22. P. Huang, X.Y. Liu, B. Chen, H.T. Li, Y.J. Wang, Y.X. Deng, K.L. Wei, L. Zeng, B. Gao, G. Du, X. Zhang, J.F. Kang, A physics based compact model of metal oxide based RRAM DC and AC operation. IEEE Trans. Electr. Dev. 60(12), 1114 (2013)

    Article  Google Scholar 

  23. B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang, Oxide-based RRAM switching mechanism: a new ion-transport-recombination model, in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 563 (2008)

    Google Scholar 

  24. B. Gao, J. Kang, L. Liu, X. Liu, B. Yu, A physical model for bipolar oxide-based resistive switching memory based on ion-transport-recombination effect. Appl. Phys. Lett. 98(23), 232108 (2011)

    Article  ADS  Google Scholar 

  25. P. Huang, D. Zhu, S. Chen, Z. Zhou, Z. Chen, B. Gao, L. Liu, X. Liu, J. Kang, Compact model of HfOX-Based electronic synaptic devices for neuromorphic computing. IEEE Trans. Electr. Dev. 64(2), 614 (2017)

    Article  ADS  Google Scholar 

  26. H.S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal-oxide RRAM. Proc. IEEE 100(6), 1951 (2012)

    Article  Google Scholar 

  27. Y.S. Chen, J.F. Kang, B. Chen, B. Gao, L.F. Liu, X.Y. Liu, Y.Y. Wang, L. Wu, H.Y. Yu, J.Y. Wang, Q. Chen, E.G. Wang, Microscopic mechanism for unipolar resistive switching behaviour of nickel oxides. J. Phys. D: Appl. Phys. 45(6), 065303 (2012)

    Article  ADS  Google Scholar 

  28. S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: modeling. IEEE Trans. Electr. Dev. 59(9), 2468 (2012)

    Article  ADS  Google Scholar 

  29. Y.M. Kim, J.S. Lee, Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104(11), 114115 (2008)

    Article  ADS  Google Scholar 

  30. Q. Liu, W.H. Guan, S.B. Long, R. Jia, M. Liu, J.N. Chen, Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 92(1), 012117 (2008)

    Article  ADS  Google Scholar 

  31. E. Ielmini, F. Nardi, C. Cagli, A.L. Lacaita, Size-dependent retention time in NiO-based resistive-switching memories. IEEE Electr. Dev. Lett. 31(4), 353 (2010)

    Article  ADS  Google Scholar 

  32. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, U.K., 1979)

    Google Scholar 

  33. S. M. Yu, Y. Wu, H.-S. Philip Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98(10), 103514(2011)

    Google Scholar 

  34. M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U-I. Chung, In-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−X/TaO2−X bilayer structures. Nat. Mater. 10(8), 625 (2011)

    Google Scholar 

  35. M. Hu, Z. Yao, X. Wang, Characterization techniques for graphene-based materials in catalysis. AIMS Mater. Sci. 4(3), 755 (2017)

    Article  Google Scholar 

  36. H. Tian, H.-Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T.-L. Ren, Y. Zhang, H.-S.P. Wong, Monitoring oxygen movement by raman spectroscopy of resistive random access memory with a graphene-inserted electrode. Nano Lett. 13(2), 651 (2013)

    Article  ADS  Google Scholar 

  37. Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Mater. 16(1), 101 (2016)

    Google Scholar 

  38. P. Calka, E. Martinez, D. Lafond, H. Dansas, S. Tirano, V. Jousseaume, F. Bertin, C. Guedj, Resistance switching in HfO2-based OxRRAM devices. Microelectr. Eng. 88(7), 1140 (2011)

    Article  Google Scholar 

  39. A. Ranjan, N. Raghavan, K. Shubhakar, R. Thamankar, J. Molina, S.J. O’Shea, M. Bosman, K.L. Pey, CAFM based spectroscopy of stress-induced defects in HfO2 with experimental evidence of the clustering model and metastable vacancy defect state. in Reliability Physics Symposium, 7A-4–1 (2016)

    Google Scholar 

  40. P. Huang, X.Y. Liu, W.H. Li, Y.X. Deng, B. Chen, Y. Lu, B. Gao, L. Zeng, K.L. Wei, G. Du, X. Zhang, J.F. Kang, A physical based analytic model of RRAM operation for circuit simulation. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 605 (2012)

    Google Scholar 

  41. R. Pornprasertsuk, T. Holme, F.B. Prinz, Kinetic Monte Carlosimulations of solid oxide fuel cell. J. Electrochem. Soc. 156(12), B1406 (2009)

    Article  Google Scholar 

  42. S. Yu, X. Guan, H.-S. P. Wong, On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 413 (2011)

    Google Scholar 

  43. S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C.U. Jung, S. Seo, M.-J. Lee, T.W. Noh, Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154 (2008)

    Article  Google Scholar 

  44. Y.D. Zhao, P. Huang, Z. Chen, H. Li, B. Chen, W. Ma, F. Zhang, B. Gao, X. Liu, J. Kang, Modeling and optimization of bilayered TaOx RRAM based on defect evolution and phase transition effects. IEEE Trans. Electr. Dev. 63(4), 1524 (2016)

    Article  ADS  Google Scholar 

  45. T. Sadi, L. Wang, L. Gerrer, V. Georgieva, A. Asenov, Self-consistent physical modeling of SiOx-based RRAM structures. In International Workshop on Computational Electronics (IWCE) (2015)

    Google Scholar 

  46. P. Huang, B. Chen, H. Li, Z. Chen, B. Gao, X. Liu, Parameters extraction on HfOX based RRAM. In European Solid-State Device Research Conference (ESSDERC), p. 250 (2014)

    Google Scholar 

  47. Y. Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, N. Raghavan, S. Clima, L. Zhang, A. Belmonte, A. Redolfi, G. S. Kar, G. Groeseneken, D. J. Wouters, M. Jurczak, Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 252 (2013)

    Google Scholar 

  48. P. Huang, B. Chen, Y. Wang, F. Zhang, L. Shen, R. Liu, L. Zeng, G. Du, X. Zhang, B. Gao, J. Kang, X. Liu, X. Wang, B.B. Weng, Y.Z. Tang, G.-Q. Lo, D.-L. Kwong, Analytic model of endurance degradation and its practical applications for operation scheme optimization in metal oxide based RRAM. in Tech. Dig. IEEE Int. Electron Devices Meeting, p. 597 (2013)

    Google Scholar 

  49. L. Chua, Memristor—the missing circuit element. IEEE Trans Circuit Theory 18(5), 507 (1971)

    Article  Google Scholar 

  50. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80 (2008)

    Article  ADS  Google Scholar 

  51. X. Guan, S. Yu, H.-S.P. Wong, A SPICE compact model of metal oxide resistive switching memory with variations. IEEE Electr. Dev. Lett. 33(10), 1405 (2012)

    Article  ADS  Google Scholar 

  52. H. Li, P. Huang, B. Gao, B. Chen, X. Liu, J. Kang, A SPICE model of resistive random access memory for large-scale memory array simulation. IEEE Electr. Dev. Lett. 35(2), 211 (2014)

    Article  ADS  Google Scholar 

  53. M. Bocquet, D. Deleruyelle, C. Muller, J.-M. Portal, Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl. Phys. Lett. 98(26), 263507 (2011)

    Article  ADS  Google Scholar 

  54. M. Bocquet, D. Deleruyelle, H. Aziza, C. Muller, J.-M. Portal, T. Cabout, E. Jalaguier, Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electr. Dev. 61(3), 674 (2014)

    Article  ADS  Google Scholar 

  55. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electr. Dev. 56(2), 186 (2009)

    Article  ADS  Google Scholar 

  56. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal-dissolution model for reset programming in unipolar resistive switching memory (RRAM) devices. IEEE Trans. Electr. Dev. 56(2), 193 (2009)

    Article  ADS  Google Scholar 

  57. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, S.S. Williams Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotech. 3(7) 429 (2008)

    Google Scholar 

  58. D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl Phys Mater Sci Process 94(3), 515 (2009)

    Article  ADS  Google Scholar 

  59. V.-A. Manual, Accellera Org (Inc., Napa, CA, USA, 2009)

    Google Scholar 

  60. Y.X. Deng, P. Huang, B. Chen, X. Yang, B. Gao, J. Wang, L. Zeng, G. Du, J. Kang, X. Liu, RRAM crossbar array with cell selection device: a device and circuit interaction study. IEEE Trans. Electr. Dev. 60(2), 719(2013)

    Google Scholar 

  61. U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, M. Fanciulli, in IEEE International Electron Devices Meeting, p. 775 (2007)

    Google Scholar 

  62. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  63. H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, M.-J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, in IEEE International Electron Devices Meeting, p. 1 (2008)

    Google Scholar 

  64. Y.S. Chen, T.-Y. Wu, P.-J. Tzeng, P.-S. Chen, H.-Y. Lee, C.-H. Lin, F. Chen, M.-J. Tsai, Forming-free HfO2 bipolar RRAM device with improved endurance and high speed operation. in International Symposium on Vlsi Technology, Systems, and Applications, p. 37 (2009)

    Google Scholar 

  65. L.G.A. Fantini, A. Redolfi, R. Degraeve, G. Kar, Y.Y Chen, M. Jurczak, Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/Hf(Al)O/Hf/TiN RRAM devices. in 2014 Symposium on VLSI Technology Digest of Technical Papers, p. 1 (2014)

    Google Scholar 

  66. C.Y. Chen, L. Goux, A. Fantini, A. Redolfi, Understanding the impact of programming pulses and electrode materials on the endurance properties of scaled Ta2O5 RRAM cells. in IEEE International Electron Devices Meeting, p. 355 (2014)

    Google Scholar 

  67. Y.Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, Balancing SET/RESET Pulse for Endurance in 1T1R Bipolar RRAM. IEEE Trans. Electr. Dev. 59(12), 3243 (2012)

    Article  ADS  Google Scholar 

  68. W. Banerjee, N. Lu, Y. Yang, L. Li, H. Lv, Q. Liu, S. Long, M. Liu, Investigation of retention behavior of TiOx/Al2O3 resistive memory and its failure mechanism based on meyer-neldel rule. IEEE Trans. Electr. Dev. 65(3), 957 (2018)

    Article  ADS  Google Scholar 

  69. M. Zhao, H. Wu, B. Gao, Q. Zhang, W. Wu, S. Wang, Y. Xi, D. Wu, N. Deng, S. Yu, H.-Y. Chen, H. Qian, Investigation of statistical retention of filamentary analog RRAM for neuromophic computing. in IEEE International Electron Devices Meeting, p. 872 (2017)

    Google Scholar 

  70. Y.S. Chen, H.Y. Lee, P.S. Chen, P.Y. Gu, C.W. Chen, W.P. Lin, W. H. Liu, Y.Y. Hsu, S.S. Sheu, P.C. Chiang, W.S. Chen, F.T. Chen, C.H. Lien, M.-J. Tsai, Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity. in IEEE International Electron Devices Meeting, p. 105 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, P., Gao, B., Kang, J. (2021). RRAM Device Characterizations and Modelling. In: Lew, W.S., Lim, G.J., Dananjaya, P.A. (eds) Emerging Non-volatile Memory Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-6912-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6912-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6910-4

  • Online ISBN: 978-981-15-6912-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics