Skip to main content

A Comprehensive Set of Novel Residual Blocks for Deep Learning Architectures for Diagnosis of Retinal Diseases from Optical Coherence Tomography Images

  • Chapter
  • First Online:
Deep Learning Applications, Volume 2

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1232))

Abstract

Spectral Domain Optical Coherence Tomography (SD-OCT) is a demanding imaging technique by which diagnosticians detect retinal diseases. Automating the procedure for early detection and diagnosis of retinal diseases has been proposed in many intricate ways through the use of image processing, machine learning, and deep learning algorithms. Unfortunately, the traditional methods are erroneous in nature and quite expensive as they require additional participation from the human diagnosticians. In this chapter, we propose a comprehensive sets novel blocks for building a deep learning architecture to effectively differentiate between different pathologies causing retinal degeneration. We further show how integrating these novel blocks within a novel network architecture gives a better classification accuracy of these disease and addresses the preexisting problems with gradient explosion in the deep residual architectures. The technique proposed in this chapter achieves better accuracy compared to the state of the art for two separately hosted Retinal OCT image data-sets. Furthermore, we illustrate a real-time prediction system that by exploiting this deep residual architecture, consisting one of these novel blocks, outperforms expert ophthalmologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Alsaih, G. Lemaitre, M. Rastgoo, J. Massich, D. Sidibé, F. Meriaudeau, Machine learning techniques for diabetic macular edema (dme) classification on sd-oct images. Biomed. Eng. Online 16(1), 68 (2017)

    Article  Google Scholar 

  2. M. Awais, H. Müller, T.B. Tang, F. Meriaudeau, Classification of sd-oct images using a deep learning approach, in 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (IEEE, 2017), pp. 489–492

    Google Scholar 

  3. R.R. Bourne, G.A. Stevens, R.A. White, J.L. Smith, S.R. Flaxman, H. Price, J.B. Jonas, J. Keeffe, J. Leasher, K. Naidoo et al., Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob. Health 1(6), e339–e349 (2013)

    Article  Google Scholar 

  4. F. Chollet, Xception: deep learning with depthwise separable convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 1251–1258

    Google Scholar 

  5. R.A. Costa, M. Skaf, L.A. Melo Jr., D. Calucci, J.A. Cardillo, J.C. Castro, D. Huang, M. Wojtkowski, Retinal assessment using optical coherence tomography. Prog. Retin. Eye Res. 25(3), 325–353 (2006)

    Article  Google Scholar 

  6. C. Prevention et al., National diabetes statistics report, 2017 (2017)

    Google Scholar 

  7. B.M. Ege, O.K. Hejlesen, O.V. Larsen, K. Møller, B. Jennings, D. Kerr, D.A. Cavan, Screening for diabetic retinopathy using computer based image analysis and statistical classification. Comput. Methods Programs Biomed. 62(3), 165–175 (2000)

    Article  Google Scholar 

  8. N. Ferrara, Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16(10), 1107 (2010)

    Article  Google Scholar 

  9. D.S. Friedman, B.J. O’Colmain, B. Munoz, S.C. Tomany, C. McCarty, P. De Jong, B. Nemesure, P. Mitchell, J. Kempen et al., Prevalence of age-related macular degeneration in the united states. Arch Ophthalmol 122(4), 564–572 (2004)

    Article  Google Scholar 

  10. I. Ghorbel, F. Rossant, I. Bloch, S. Tick, M. Paques, Automated segmentation of macular layers in OCT images and quantitative evaluation of performances. Pattern Recognit. 44(8), 1590–1603 (2011)

    Article  Google Scholar 

  11. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

    Google Scholar 

  12. K. He, X. Zhang, S. Ren, J. Sun, J.: Identity mappings in deep residual networks, in European Conference on Computer Vision (Springer, 2016), pp. 630–645

    Google Scholar 

  13. R. Kafieh, H. Rabbani, S. Kermani, A review of algorithms for segmentation of optical coherence tomography from retina. J. Med. Signals Sens. 3(1), 45 (2013)

    Article  Google Scholar 

  14. S.A. Kamran, S. Saha, A.S. Sabbir, A. Tavakkoli, Optic-net: a novel convolutional neural network for diagnosis of retinal diseases from optical tomography images, in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (2019), pp. 964–971

    Google Scholar 

  15. S.P.K. Karri, D. Chakraborty, J. Chatterjee, Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed. Opt. Express 8(2), 579–592 (2017)

    Article  Google Scholar 

  16. D.S. Kermany, M. Goldbaum, W. Cai, C.C. Valentim, H. Liang, S.L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan et al., Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Article  Google Scholar 

  17. A. Lang, A. Carass, M. Hauser, E.S. Sotirchos, P.A. Calabresi, H.S. Ying, J.L. Prince, Retinal layer segmentation of macular oct images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013)

    Article  Google Scholar 

  18. C.S. Lee, D.M. Baughman, A.Y. Lee, Deep learning is effective for classifying normal versus age-related macular degeneration oct images. Ophthalmol. Retin. 1(4), 322–327 (2017)

    Article  Google Scholar 

  19. J.Y. Lee, S.J. Chiu, P.P. Srinivasan, J.A. Izatt, C.A. Toth, S. Farsiu, G.J. Jaffe, Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems. Investig. ophthalmol. Vis. Sci. 54(12), 7595–7602 (2013)

    Google Scholar 

  20. K. Lee, M. Niemeijer, M.K. Garvin, Y.H. Kwon, M. Sonka, M.D. Abramoff, Segmentation of the optic disc in 3-d OCT scans of the optic nerve head. IEEE Trans. Med. Imaging 29(1), 159–168 (2010)

    Article  Google Scholar 

  21. G. Lemaître, M. Rastgoo, J. Massich, C.Y. Cheung, T.Y. Wong, E. Lamoureux, D. Milea, F. Mériaudeau, D. Sidibé, Classification of sd-oct volumes using local binary patterns: experimental validation for dme detection. J. Ophthalmol. 2016 (2016)

    Google Scholar 

  22. X.C. MeindertNiemeijer, L.Z.K. Lee, M.D. Abràmoff, M. Sonka, 3d segmentation of fluid-associated abnormalities in retinal oct: Probability constrained graph-search-graph-cut. IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012)

    Google Scholar 

  23. A. Mishra, A. Wong, K. Bizheva, D.A. Clausi, Intra-retinal layer segmentation in optical coherence tomography images. Opt. Express 17(26), 23719–23728 (2009)

    Article  Google Scholar 

  24. H. Nguyen, A. Roychoudhry, A. Shannon, Classification of diabetic retinopathy lesions from stereoscopic fundus images, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.’Magnificent Milestones and Emerging Opportunities in Medical Engineering (Cat. No. 97CH36136), vol. 1 (IEEE, 1997), pp. 426–428

    Google Scholar 

  25. G. Panozzo, B. Parolini, E. Gusson, A. Mercanti, S. Pinackatt, G. Bertoldo, S. Pignatto, Diabetic macular edema: an oct-based classification. Semin. Ophthalmol. 19, 13–20 (Taylor & Francis) (2004)

    Google Scholar 

  26. G. Quellec, K. Lee, M. Dolejsi, M.K. Garvin, M.D. Abramoff, M. Sonka, Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in sd-oct of the macula. IEEE Trans. Med. imaging 29(6), 1321–1330 (2010)

    Article  Google Scholar 

  27. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  28. C.I. Sánchez, R. Hornero, M.I. Lopez, J. Poza, Retinal image analysis to detect and quantify lesions associated with diabetic retinopathy, in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1 (IEEE, 2004), pp. 1624–1627

    Google Scholar 

  29. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, Mobilenetv2: inverted residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  30. L. Sifre, S. Mallat, Rigid-motion scattering for image classification. Ph.D. thesis, vol. 1, no. 3 (2014)

    Google Scholar 

  31. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  32. P.P. Srinivasan, L.A. Kim, P.S. Mettu, S.W. Cousins, G.M. Comer, J.A. Izatt, S. Farsiu, Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed. Opt. Express 5(10), 3568–3577 (2014)

    Article  Google Scholar 

  33. D.S.W. Ting, G.C.M. Cheung, T.Y. Wong, Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin. Exp. Ophthalmol. 44(4), 260–277 (2016)

    Article  Google Scholar 

  34. M. Treder, J.L. Lauermann, N. Eter, Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe’s Arch. Clin. Exp. Ophthalmol. 256(2), 259–265 (2018)

    Article  Google Scholar 

  35. F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X. Tang, Residual attention network for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  36. M.A. Wani, F.A. Bhat, S. Afzal, A.I. Khan, Advances in Deep Learning (Springer, 2020)

    Google Scholar 

  37. W.L. Wong, X. Su, X. Li, C.M.G. Cheung, R. Klein, C.Y. Cheng, T.Y. Wong, Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2(2), e106–e116 (2014)

    Article  Google Scholar 

  38. J.W. Yau, S.L. Rogers, R. Kawasaki, E.L. Lamoureux, J.W. Kowalski, T. Bek, S.J. Chen, J.M. Dekker, A. Fletcher, J. Grauslund et al., Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3), 556–564 (2012)

    Article  Google Scholar 

  39. F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions (2015). arXiv preprint arXiv:1511.07122

Download references

Acknowledgments

We would like to thank https://www.cse.unr.edu/CVL/ “UNR Computer Vision Laboratory” and http://ccse.iub.edu.bd/ “Center for Cognitive Skill Enhancement” for providing us with the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif Amit Kamran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamran, S.A., Saha, S., Sabbir, A.S., Tavakkoli, A. (2021). A Comprehensive Set of Novel Residual Blocks for Deep Learning Architectures for Diagnosis of Retinal Diseases from Optical Coherence Tomography Images. In: Wani, M.A., Khoshgoftaar, T.M., Palade, V. (eds) Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing, vol 1232. Springer, Singapore. https://doi.org/10.1007/978-981-15-6759-9_2

Download citation

Publish with us

Policies and ethics