Skip to main content

Biosurfactants for Oil Pollution Remediation

  • Chapter
  • First Online:
Microbial Biosurfactants

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Petroleum industries are considered as major energy resources, but as simultaneously producing large amounts of hydrocarbon wastes that are discharged into soil and water bodies. Environmental pollution due to exponential development of the petrochemical industries was a major concern in the twentieth century. Oil and oil products contamination, which belong to the carcinogenic and neurotoxic organic pollutants family, pose a severe threat to general health of public, choke aquatic life to death, and accumulate in soil and disturb the ecosystem. Numerous different technologies have been used for the removal of hydrocarbon/oil pollutants from polluted sites, such as physical, chemical, and biological methods. Conventional  physical and chemical methods can only immobilize at site or transfer’s contaminants from one medium to another and can even result in production of toxic by-products. Hence, petroleum oil and petroleum hydrocarbons cannot be entirely eradicated with physical and chemical methods. Thus, focus is being given to biological methods generally. Biosurfactants are considered as a promising alternative for the removal of oil pollutants due to their amphiphilic nature: they have the capability to reduce interfacial tension, disperse oil particles, high surface activity, lower toxicity, biodegradability and environmental friendliness, and are active under extreme conditions of salinity, pH and temperature. This chapter briefly discusses how microorganisms produce biosurfactant when they feed on insoluble substrates such as oil/petroleum waste. It also reveals the biosurfactant mode of action to remove petroleum waste and its derivatives (heavy metals, PAHs, etc.) from oil spills, cleaning pipelines, and containers. Biosurfactants emerge as potential biomolecules in petroleum industry waste bioremediation and need to be scaled up for the upcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari S, Abdurahman NH, Yunus RM, Fayaz F, Alara OR (2018) Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnol Res Innov 2(1):81–90

    Article  Google Scholar 

  • Appanna VD, Finn H, Pierre MS (1995) Exocellular phosphatidylethanolamine production and multiple-metal tolerance in Pseudomonas fluorescens. FEMS Microbiol Lett 131(1):53–56

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508

    Article  CAS  PubMed  Google Scholar 

  • Batista SB, Mounteer AH, Amorim FR, Totola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol 97(6):868–875

    Article  CAS  PubMed  Google Scholar 

  • Behera BK, Prasad R (2020) Environmental technology and sustainability. Elsevier (ISBN: 9780128191033). https://www.elsevier.com/books/environmental-technology-and-sustainability/behera/978-0-12-819103-3

  • Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54(6):445–449

    Article  CAS  PubMed  Google Scholar 

  • Bennur T, Kumar AR, Zinjarde S, Javdekar V (2015) Nocardiopsis species: incidence, ecological roles and adaptations. Microbiol Res 174:33–47

    Article  PubMed  Google Scholar 

  • Bordas F, Lafrance P, Villemur R (2005) Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids. Environ Pollut 138(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Brussaard CP, Peperzak L, Beggah S, Wick LY, Wuerz B, Weber J, Arey JS, Van Der Burg B, Jonas A, Huisman J, Van Der Meer JR (2016) Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nat Commun 7(1):1–11

    Article  CAS  Google Scholar 

  • Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54(6):1420–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WJ, Hsiao LC, Chen KKY (2008) Metal desorption from copper (II)/nickel (II)-spiked kaolin as a soil component using plant-derived saponin biosurfactant. Process Biochem 43(5):488–498

    Article  CAS  Google Scholar 

  • Chen YG, Wang YX, Zhang YQ, Tang SK, Liu ZX, Xiao HD, Xu LH, Cui XL, Li WJ (2009) Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone. Int J Syst Evol Microbiol 59(11):2708–2713

    Article  CAS  PubMed  Google Scholar 

  • Chukwunonso I, Ahmed A, Hassan A, Shahul F (2020) Environmental Technology & Innovation Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526

    Article  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50(4):846–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the middle Atlantic ridge. Environ Microbiol 10:2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    Article  PubMed  Google Scholar 

  • De Almeida DG, Soares Da Silva RDCF, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1718

    Article  PubMed  PubMed Central  Google Scholar 

  • De S, Malik S, Ghosh A, Saha R, Saha B (2015) A review on natural surfactants. RSC Adv 5(81):65757–65767

    Article  CAS  Google Scholar 

  • Dean SM, Jin Y, Cha DK, Wilson SV, Radosevich M (2001) Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J Environ Qual 30(4):1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Dell’Anno F, Sansone C, Ianora A, Dell’Anno A (2018) Biosurfactant-induced remediation of contaminated marine sediments: current knowledge and future perspectives. Mar Environ Res 137:196–205

    Article  PubMed  CAS  Google Scholar 

  • Effendi AJ, Kardena E, Helmy Q (2018) Biosurfactant-enhanced petroleum oil bioremediation. In: Microbial action on hydrocarbons. Springer, Singapore, pp 143–179

    Chapter  Google Scholar 

  • Erdogan EE, Karaca A (2011) Bioremediation of crude oil polluted soils. Asian J Biotechnol 3(3):206–213

    Article  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJ, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112(6):617–627

    Article  CAS  Google Scholar 

  • Freitas BG, Brito JM, Brasileiro PP, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Front Microbiol 7:1646

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottfried A, Singhal N, Elliot R, Swift S (2010) The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries. Appl Microbiol Biotechnol 86(5):1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Häder DP, Banaszak AT, Villafañe VE, Narvarte MA, González RA, Helbling EW (2020) Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci Total Environ 713:136586

    Article  PubMed  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15

    Article  CAS  PubMed  Google Scholar 

  • Hewelke E, SzatyÅ‚owicz J, Hewelke P, Gnatowski T, Aghalarov R (2018) The impact of diesel oil pollution on the hydrophobicity and CO2 efflux of forest soils. Water Air Soil Pollut 229(2):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill J (2009) Environmental costs and benefits of transportation biofuel production from food-and lignocellulose-based energy crops: a review. In: Sustainable agriculture. Springer, Dordrecht, pp 125–139. http://www.itopf.org/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_2018.pdf; https://www.itopf.org/knowledge-resources/data-statistics/statistics/

    Chapter  Google Scholar 

  • Huszcza E, Burczyk B (2003) Biosurfactant production by Bacillus coagulans. J Surfactant Deterg 6(1):61–64

    Article  CAS  Google Scholar 

  • Jenneman GE, McInerney MJ, Knapp RM, Clark JB, Feero JM, Revus DE, Menzie DE (1983) Halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery. Dev Ind Microbiol 24:485

    CAS  Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 184:109607

    Article  CAS  PubMed  Google Scholar 

  • Jorfi S, Rezaee A, Moheb-ali G, Jaafarzadeh NA (2013) Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J Environ Health Sci Eng 11:17. https://doi.org/10.1186/2052-336X-11-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian J Microbiol 48:142–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160(3):780–790

    Article  CAS  PubMed  Google Scholar 

  • Lim MW, Von Lau E, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109(1):14–45

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Wang H, Kong L, Li S, Sun Y (2019) Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation. J Hazard Mater 377:341–348

    Article  CAS  PubMed  Google Scholar 

  • Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–122

    Article  CAS  PubMed  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Morgan P, Atlas RM (1989) Hydrocarbon degradation in soils and methods for soil biotreatment. Crit Rev Biotechnol 8(4):305–333

    Article  CAS  PubMed  Google Scholar 

  • Mülligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the removal of heavy metals from sediments. J Hazard Mater 85:145–163

    Article  PubMed  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77(1–2):37–44

    Article  CAS  PubMed  Google Scholar 

  • Ochoa Loza FJ (1998) Physico-chemical factors affecting rhamnolipid (biosurfactant) application for removal of metal contaminants from soil. The University of Arizona, Tucson, AZ

    Google Scholar 

  • Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133

    Article  CAS  Google Scholar 

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2019) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17

    Google Scholar 

  • Pacwa-PÅ‚ociniczak M, PÅ‚aza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:158764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey G, Madhuri S (2014) Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fishery Sci 2(2):17–23

    CAS  Google Scholar 

  • Patel S, Homaei A, Patil S, Daverey A (2019) Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Appl Microbiol Biotechnol 103(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Pei D, Xu J, Zhuang Q, Tse HF, Esteban MA (2010) Induced pluripotent stem cell technology in regenerative medicine and biology. In: Bioreactor systems for tissue engineering II. Springer, Berlin, pp 127–141

    Chapter  Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in bioremediation: the new era of environmental microbiology and nanobiotechnology. Springer International Publishing (ISBN: 978-3-030-02369-0). https://www.springer.com/gp/book/9783030023683

  • Prince RC, Lessard RR, Clark JR (2003) Bioremediation of marine oil spills. Oil Gas Sci Technol 58(4):463–468

    Article  CAS  Google Scholar 

  • Sajna KV, Höfer R, Sukumaran RK, Gottumukkala LD, Pandey A (2015) White biotechnology in biosurfactants. In: Industrial biorefineries & white biotechnology. Elsevier, Amsterdam, pp 499–521

    Chapter  Google Scholar 

  • Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 30(2):127–144

    Article  CAS  PubMed  Google Scholar 

  • Shin KH, Ahn Y, Kim KW (2005) Toxic effect of biosurfactant addition on the biodegradation of phenanthrene. Environ Toxicol Chem 24(11):2768–2774

    Article  CAS  PubMed  Google Scholar 

  • Silva RDCF, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15(7):12523–12542

    Article  PubMed Central  CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2009) Biological remediation of soil: an overview of global market and available technologies. In: Advances in applied bioremediation. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Sose AT, Kulkarni SJ, Sose MT (2018) Oil industry–analysis, effect and removal of heavy metals. Int J Eng Sci Res Technol 6:254–257

    Google Scholar 

  • Ubalua AO (2011) Bioremediation strategies for oil polluted marine ecosystems. Aust J Agric Eng 2(6):160

    Google Scholar 

  • Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57(9):1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeter Biodegr 120:71–83

    Article  CAS  Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10(5):181

    Article  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8(6):401–417

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xu J, Zhao W, Zhang J (2014) Effects and risk evaluation of oil spillage in the sea areas of Changxing Island. Int J Environ Res Public Health 11(8):8491–8507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Zhang B, Li G, Wu T, Sun D (2019) Efficient remediation of crude oil-contaminated soil using a solvent/surfactant system. RSC Adv 9(5):2402–2411

    Article  PubMed  PubMed Central  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151(1):155–163

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, Zhang N, He B (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem 44(3):302–308

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA, Lazaridis NK, Golyshin PN (2003) The use of biosurfactants in flotation: application for the removal of metal ions. Miner Eng 16(11):1231–1236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizvi, H., Verma, J.S., Ashish (2021). Biosurfactants for Oil Pollution Remediation. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Microbial Biosurfactants. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6607-3_9

Download citation

Publish with us

Policies and ethics