Skip to main content

Surfactin: A Biosurfactant Against Breast Cancer

  • Chapter
  • First Online:
Microbial Biosurfactants

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Surfactin is a biosurfactant produced by different species of the genus Bacillus. It poses anticancer activity against breast and other different cancers. Surfactin suppresses cancerous growth by cell cycle arrest and programed cell death and also captures metastasis. As a result of the fantastic impact, surfactin is widely studied. Here the synthesis, structure, and properties of surfactin, along with its effectiveness against breast cancer, are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi H, Noghabi KA, Ortiz A (2012) Interaction of a bacterial monorhamnolipid secreted by Pseudomonas aeruginosa MA01 with phosphatidylcholine model membranes. Chem Phys Lipids 165:745–752

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA-H (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:289–303

    Article  CAS  PubMed  Google Scholar 

  • Akiyode O, George D, Getti G, Boateng J (2016) Systematic comparison of the functional physico-chemical characteristics and biocidal activity of microbial derived biosurfactants on blood-derived and breast cancer cells. J Colloid Interface Sci 479:221–233

    Article  CAS  PubMed  Google Scholar 

  • Alonso M, Tamasdan C, Miller DC, Newcomb EW (2003) Flavopiridol induces apoptosis in Glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a Caspase-independent Pathway1. Mol Cancer Ther 2:139–150

    Article  CAS  PubMed  Google Scholar 

  • Asmer H-J, Lang S, Wagner F, Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65:1460–1466

    Article  CAS  Google Scholar 

  • Ban T, Sato T, Yen TF (1998) Interfacial activity of n-alkyl amines from microbially produced spiculisporic acid. J Petrol Sci Eng 21:223–238

    Article  CAS  Google Scholar 

  • Beebe JL, Umbreit W (1971) Extracellular lipid of Thiobacillus thiooxidans. J Bacteriol 108:612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharali P, Saikia J, Ray A, Konwar B (2013) Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Colloids Surf B Biointerfaces 103:502–509

    Article  CAS  PubMed  Google Scholar 

  • Bröker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162

    Article  PubMed  Google Scholar 

  • Cameron DR, Cooper DG, Neufeld R (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54:1420–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X-H, Liao Z-Y, Wang C-L, Yang W-Y, Lu M-F (2009a) Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz J Microbiol 40:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao XH, Liao ZY, Wang CL, Cai P, Yang WY, Lu MF, Huang GW (2009b) Purification and antitumour activity of a lipopeptide biosurfactant produced by Bacillus natto TK-1. Biotechnol Appl Biochem 52:97–106

    Article  CAS  PubMed  Google Scholar 

  • Cao X-H, Wang A-H, Wang C-L, Mao D-Z, Lu M-F, Cui Y-Q, Jiao R-Z (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362

    Article  CAS  PubMed  Google Scholar 

  • Cao X-H, Zhao S-S, LIU D-Y, Wang Z, Niu L-L, Hou L-H, Wang C-L (2011) ROS-Ca2+ is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis. Chem Biol Interact 190:16–27

    Article  CAS  PubMed  Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Song X, Zhang H, Qu Y (2006) Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme Microb Technol 39:501–506

    Article  CAS  Google Scholar 

  • Chen S-Y, Wei Y-H, Chang J-S (2007) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74

    Article  CAS  PubMed  Google Scholar 

  • Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170:676–689

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    Article  CAS  PubMed  Google Scholar 

  • Cutler AJ, Light RJ (1979) Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. J Biol Chem 254:1944–1950

    Article  CAS  PubMed  Google Scholar 

  • Dehghan-Noudeh G, Housaindokht M, Bazzaz BSF (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276

    Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte C, Gudiña EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felse PA, Shah V, Chan J, Rao KJ, Gross RA (2007) Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme Microb Technol 40:316–323

    Article  CAS  Google Scholar 

  • Fernandez-Abalos JM, Reviejo V, Díaz M, Rodríguez S, Leal F, Santamaría RI (2003) Posttranslational processing of the xylanase Xys1L from Streptomyces halstedii JM8 is carried out by secreted serine proteases. Microbiology 149:1623–1632

    Article  CAS  PubMed  Google Scholar 

  • Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potentials. Biomed Sci Eng Technol 14:326–335

    Google Scholar 

  • Gabriela S, Jaroslava S (2008) Review of surfactin chemical properties and potential applications. Cent Eur J Med 3:123–133

    Google Scholar 

  • Gan P, Jin D, Zhao X, Gao Z, Wang S, Du P, Qi G (2016) Bacillus-produced surfactin attenuates chronic inflammation in atherosclerotic lesions of ApoE−/− mice. Int Immunopharmacol 35:226–234

    Article  CAS  PubMed  Google Scholar 

  • Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34:667–675

    Article  PubMed  CAS  Google Scholar 

  • Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, Řezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Ju L-K (2001) Purification of lactonic sophorolipids by crystallization. J Biotechnol 87:263–272

    Article  CAS  PubMed  Google Scholar 

  • Huang X-F, Liu J, Lu L-J, Wen Y, Xu J-C, Yang D-H, ZHOU Q (2009) Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp. Bioresour Technol 100:1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Hwang M-H, Lim J-H, Yun H-I, Rhee M-H, Cho J-Y, HSU WH, Park S-C (2005) Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1β and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Biotechnol Lett 27:1605–1608

    Article  CAS  PubMed  Google Scholar 

  • HWANG Y-H, KIM M-S, SONG I-B, PARK B-K, LIM J-H, PARK S-C, YUN H-I (2009) Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in rats. J Health Sci 55:351–355

    Article  CAS  Google Scholar 

  • Isoda H, Nakahara T (1997) Mannosylerythritol lipid induces granulocytic differentiation and inhibits the tyrosine phosphorylation of human myelogenous leukemia cell line K562. Cytotechnology 25:191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isoda H, Shinmoto H, Matsumura M, Nakahara T (1995) Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte-macrophages. Cytotechnology 19:79–88

    Article  CAS  PubMed  Google Scholar 

  • Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. In: Twentieth symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp 223–233

    Chapter  Google Scholar 

  • Kakinuma A, Ouchida A, Shima T, Sugino H, Isono M, Tamura G, Arima K (1969) Confirmation of the structure of surfactin by mass spectrometry. Agric Biol Chem 33:1669–1671

    Article  CAS  Google Scholar 

  • Käppeli O, Finnerty W (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Käppeli O, Walther P, Mueller M, Fiechter A (1984) Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138:279–282

    Article  PubMed  Google Scholar 

  • Kim S-Y, Kim JY, Kim S-H, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee C-E (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto D, Morita T, Fukuoka T, Konishi M-A, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14:315–328

    Article  CAS  Google Scholar 

  • Kluge B, Vater J, Salnikow J, Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett 231:107–110

    Article  CAS  PubMed  Google Scholar 

  • Kracht M, Rokos H, Özel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52:613–619

    Article  CAS  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids–biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  CAS  PubMed  Google Scholar 

  • Lee S-C, Lee S-J, Kim S-H, Park I-H, Lee Y-S, Chung S-Y, Choi Y-L (2008) Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Bioresour Technol 99:2288–2292

    Article  CAS  PubMed  Google Scholar 

  • Lee M-H, Lee J, Nam Y-D, Lee JS, Seo M-J, Yi S-H (2016) Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food. Int J Food Microbiol 221:12–18

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Lang S, Wagner F, Witte I, Wray V (1984) Formation and identification of interfacial-active glycolipids from resting microbial cells. Appl Environ Microbiol 48:610–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Tao X, Zou A, Yang S, Zhang L, Mu B (2010) Effect of the microbial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein Cell 1:584–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loiseau C, Schlusselhuber M, Bigot R, Bertaux J, Berjeaud J-M, Verdon J (2015) Surfactin from Bacillus subtilis displays an unexpected anti-legionella activity. Appl Microbiol Biotechnol 99:5083–5093

    Article  CAS  PubMed  Google Scholar 

  • Lukong KE (2017) Understanding breast cancer—the long and winding road. BBA Clin 7:64–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Maitani Y, Yano S, Hattori Y, Furuhata M, Hayashi K (2006) Liposome vector containing biosurfactant-complexed DNA as herpes simplex virus thymidine kinase gene delivery system. J Liposome Res 16:359–372

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi M, Inoh Y, Kitamoto D, FURUNO T (2009) Nano vectors with a biosurfactant for gene transfection and drug delivery. J Drug Deliv Sci Technol 19:165–169

    Article  CAS  Google Scholar 

  • Nakano MM, Zuber P (1990) Molecular biology of antibiotic production in Bacillus. Crit Rev Biotechnol 10:223–240

    Article  CAS  PubMed  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron E, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neto DC, Meira JA, De Araújo JM, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81:441

    Article  CAS  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rahman P, Gakpe E (2008) Production, characterisation and applications of biosurfactants-review. Biotechnology 7:360–370

    Article  CAS  Google Scholar 

  • Rahman K, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Rehm H, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. In: Reactors and reactions. Springer, Berlin

    Google Scholar 

  • Rodrigues LR (2011) Inhibition of bacterial adhesion on medical devices. In: Bacterial adhesion. Springer, Berlin

    Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick D (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen R (2010) Surfactin: biosynthesis, genetics and potential applications. In: Biosurfactants. Springer, Berlin

    Chapter  Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin—a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48:119–134

    CAS  Google Scholar 

  • Singhal SK, Usmani N, Michiels S, Metzger-Filho O, Saini KS, Kovalchuk O, Parliament M (2016) Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data. Oncotarget 7:3002

    Article  PubMed  Google Scholar 

  • Sivapathasekaran C, Das P, Mukherjee S, Saravanakumar J, Mandal M, SEN R (2010) Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines. Int J Pept Res Ther 16:215–222

    Article  CAS  Google Scholar 

  • Sodagari M, Wang H, Newby B-MZ, Ju L-K (2013) Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Colloids Surf B Biointerfaces 103:121–128

    Article  CAS  PubMed  Google Scholar 

  • Straus SK, Hancock RE (2006) Mode of action of the new antibiotic for gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta Biomembr 1758:1215–1223

    Article  CAS  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  • Tulloch A, Hill A, Spencer J (1967) A new type of macrocyclic lactone from Torulopsis apicola. Chem Commun (Camb) 7:584–586

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  PubMed  CAS  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901

    Article  CAS  Google Scholar 

  • Vater J, Stein T, Vollenbroich D, Kruft V, Wittmann-Liebold B, Franke P, Liu L, Zuber P (1997) The modular organization of multifunctional peptide synthetases. J Protein Chem 16:557–564

    Article  CAS  PubMed  Google Scholar 

  • Veenanadig N, Gowthaman M, Karanth N (2000) Scale up studies for the production of biosurfactant in packed column bioreactor. Bioprocess Eng 22:95–99

    Article  CAS  Google Scholar 

  • Vollenbroich D, Özel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Lou Z, Miao Y, Yu Y, Dong H, Peng W, Bartlam M, Li X, Rao Z (2010) Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Protein Cell 1:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y-S, Ngai S-C, Goh B-H, Chan K-G, Lee L-H, Chuah L-H (2017) Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol 8:761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, Wang C (2015) Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38:756–764

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Geltinger C, Kishikawa S, Ohshima K, Murata T, Nomura N, Nakahara T, Yokoyama KK (2000) Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis. Cytotechnology 33:123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pimpi Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, P., Kaushik, K.K., Lu, T., Dong, K. (2021). Surfactin: A Biosurfactant Against Breast Cancer. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Microbial Biosurfactants. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6607-3_7

Download citation

Publish with us

Policies and ethics