Skip to main content

Antibacterial Biosurfactants

  • Chapter
  • First Online:
Microbial Biosurfactants

Abstract

When we say surfactant the first thing that comes in our mind is detergent. Obviously surfactants are detergents but they are more than that! Surfactants are very important for their versatile applications, as detergents and lubricants and in drug manufacturing, food processing, bioremediation, crude oil degradation, cosmetic production, removal of heavy metals, etc. The list can be really long but here we are only interested in the antibacterial activity of biosurfactants. Biosurfactants are formed by the microorganisms when the latter lives in a competitive environment. As a result, biosurfactants possess antibacterial properties. Different strains of microorganisms can produce various types of biosurfactants. Multiple drug resistance (MDR) against standard drugs is a challenge nowadays. Antibacterial biosurfactants, owing to their large variety can be a remedy to this problem. The sources of biosurfactants are very cheap, because, generally, they are produced from industrial waste, food waste, and cheap raw materials. Due to industrial application, medicinal importance, and economic viability, biosurfactants find a niche in our daily life. Lots of researches are ongoing to explore their full potential. This chapter provides a very basic discussion on biosurfactants and recent developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelli F, Jardak M, Elloumi J (2019) Antibacterial, anti-adherent and cytotoxic activities of surfactin(s) from a lipolytic strain Bacillus safensis F4. Biodegradation 30:287–300

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Bakri AG, Afifi FU (2007) Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J Microbiol Methods 68:19–25

    Article  CAS  PubMed  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  PubMed  Google Scholar 

  • Ashitha A, Radhakrishnan EK, Mathew J (2020) Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J Biotechnol 313:1–10

    Article  CAS  Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose containing glycolipids. Prog Chem Fats Other Lipids 16:59–99

    Article  CAS  PubMed  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharmaceut Anal 6:71–79

    Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12

    Article  CAS  Google Scholar 

  • Barenholz Y, Thompson T (1980) Sphingomyelins in bilayers and biological membranes. Biochim Biophys Acta 604:129–158

    Article  CAS  PubMed  Google Scholar 

  • Beck MR, Levin DT, Angelone BL (2007) Metacognitive errors in change detection: lab and life converge. Conscious Cogn 16:58–62

    Article  Google Scholar 

  • Benkendorff K, Davis AR, Rogers CN, Bremner JB (2005) Free fatty acids and sterols in the benthic spawn of aquatic molluscs and their associated antimicrobial properties. J Exp Mar Biol Ecol 316:29–44

    Article  CAS  Google Scholar 

  • Bergsson G, Arnfinnsson J, Karlsson SM, Steingrimsson O, Thormar H (1998) In vitro inactivation of chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother 42(9):2290–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178

    Article  CAS  Google Scholar 

  • Cerantola V, Vionnet C, Aebischer OF, Jenny T, Khudsen J, Conzelmann A (2007) Yeast sphingolipids do not need to contain very long chain fatty acids. Biochem J 401:205–216

    Article  CAS  PubMed  Google Scholar 

  • Ceresa C, Hutton S, Lajarin-Cuesta M (2020) Production of Mannosylerythritol lipids (MELs) to be used as antimicrobial agents against S. aureus ATCC 6538. Curr Microbiol 77(8):1373–1380. https://doi.org/10.1007/s00284-020-01927-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheffi M, Hentati D, Chebbi A (2020) Isolation and characterization of a newly naphthalene-degrading Halomonas pacifica, strain Cnaph3: biodegradation and biosurfactant production studies. 3 Biotech 10:89. https://doi.org/10.1007/s13205-020-2085-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi JS, Park NH, Hwang SY, Sohn JH, Kwak I, Cho KK, Choi IS (2013) The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens. J Environ Biol 34(4):673–676

    PubMed  Google Scholar 

  • Choma LM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A 1218:2684–2691

    Article  CAS  PubMed  Google Scholar 

  • Copper TG, Lam C, Turoscy V (1980) Structural analysis of the dur loci in S. cerevisiae: two domains of a single multifunctional gene. Genetics 94(3):555–580

    Article  Google Scholar 

  • Coulondre C, Miller JH (1977) Genetic studies of the lac repressor. IV Mutagenic specificity in the lacI gene of Escherichia coli. J Mol Biol 117:577–606

    Article  CAS  PubMed  Google Scholar 

  • Das BC, Gero SD, Lederer E (1969) An acetylated N-terminus of adenovirus type 2 hexon protein. Biochem Biophys Res Commun 29:211–215

    Article  Google Scholar 

  • De Jesus C-SA, Hernandez-Sanchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168(1):22–32

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhagat S, Jujjavarapu SE (2020) Isolation of a novel thermophilic bacterium capable of producing high-yield bioemulsifier and its kinetic modelling aspects along with proposed metabolic pathway. Braz J Microbiol 51:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JR, Hayashi JA (1965) Structure of a Rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111:415–421

    Article  CAS  PubMed  Google Scholar 

  • Eibl H (1980) Synthesis of glycerophospholipids. Chem Phys Lipids 26(4):405–429

    Article  CAS  PubMed  Google Scholar 

  • Falk NA (2019) Surfactants as antimicrobials: a brief overview of microbial interfacial chemistry and surfactant antimicrobial activity. J Surfactant Deterg 22:1119–1127

    CAS  Google Scholar 

  • Felix AKN, Martins JJ, Almeida JGL, Giro MEA, Cavalcante KF, Melo VMM, de Santiago AR (2019) Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids Surf B Biointerfaces 175:256–263

    Article  CAS  Google Scholar 

  • Fenibo EO, Douglas SI, Stanley HO (2019) A review on microbial surfactants: production, classifications, properties and characterization. J Adv Microbiol 18(3):1–22

    Article  CAS  Google Scholar 

  • Fischer R, Lautner H (1961) On the paper chromatographic detection of penicillin preparations. Arch Pharm 294:1–7

    Article  CAS  Google Scholar 

  • Galbraith H, Miller TB (1973) Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Bacteriol 36:647–658

    Article  CAS  PubMed  Google Scholar 

  • Galbraith H, Miller TB, Paton AM, Thompson JK (1971) Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol 34(4):803–813

    Article  CAS  PubMed  Google Scholar 

  • Garedew A, Schnmolz E, Lamprecht I (2004) Modern phytomedicine: turning medical plants into drugs. Thermochim Acta 415:99–106

    Article  CAS  Google Scholar 

  • Gaur VK, Bajaj A, Regar RK, Kamthan M, Jha RR, Srivastava JK, Manickam N (2019) Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. Bioresour Technol 272:19–25

    Article  CAS  PubMed  Google Scholar 

  • Giri SS, Ryua EC, Sukumaran V, Park SC (2019) Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microb Pathog 132:66–72

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lopez A, Aberkane A, Petrikkou E, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M (2005) Analysis of the influence of tween concentration, inoculum size, assay medium, and reading time on susceptibility testing of Aspergillus spp. J Clin Microbiol 43:1251–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodall RR, Levi AA (1946) A microchromatographic method for the detection and approximate determination of the different Penicillins in a mixture. Nature 158:675–676

    Article  CAS  PubMed  Google Scholar 

  • Gorin PAJ, Spencer JFT, Tullock AP (1961) Biosurfactants, production, properties, applications. Can J Chem 39:846–855

    Article  CAS  Google Scholar 

  • Grangemard I, Bonmatin JM, Bernillon J, Das BC, Peypoux F, Lichenysins G (1999) A novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: production, isolation and structural evaluation by NMR and mass spectrometry. J Antibiot 52:363–373

    Article  CAS  Google Scholar 

  • Greenway DLA, Dyke KGH (1979) Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol 115:233–245

    Article  CAS  PubMed  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Influence of organic matter, cations and surfactants on the antimicrobial activity of Melaleuca alternifolia (tea tree) oil in vitro. J Appl Microbiol 86:446–452

    Article  CAS  PubMed  Google Scholar 

  • Hayder HN (2015) Production, characterization and antimicrobial activity of a bioemulsifier produced by Acinetobacter baumanii AC5 utilizing edible oils. Iraq J Biotechnol 14:55–70

    Google Scholar 

  • Hazell SL, Graham DY (1990) Unsaturated fatty acids and viability of helicobacter (campylobacter) pylori. J Clin Microbiol 28(5):1060–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of Rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692

    Article  Google Scholar 

  • Hussain T, Haris M, Shakeel A (2020) Bio-nematicidal activities by culture filtrate of Bacillus subtilis HussainT-AMU: new promising biosurfactant bioagent for the management of root galling caused by Meloidogyne incognita. Vegetos 33:229. https://doi.org/10.1007/s42535-020-00099-5

    Article  Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A glyco-lipide produced by Pseudomonas Aeruginosa. J Am Chem Soc 71(12):4124–4126

    Article  CAS  Google Scholar 

  • Jones TS (1949) Chemical evidence for the multiplicity of the antibiotics produced by Bacillus polymyxa. Ann N Y Acad Sci 51:909–916

    Article  CAS  PubMed  Google Scholar 

  • Jones DF (1967) Novel macrocyclic glycolipids from Torulopsis gropengiesseri. J Chem Soc C 6:479–484

    Article  Google Scholar 

  • Kabara JJ, Varble R (1977) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Lipids 12:753–759

    Article  CAS  PubMed  Google Scholar 

  • Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116–126

    CAS  Google Scholar 

  • Kaur K, Sangwan S, Kaur H (2017) Biosurfactant production by yeasts isolated from hydrocarbon polluted environments. Environ Monit Assess 189(12):603–612

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Lee JD, Kim BC, Lee TH (1996) Purification and characterization of bioemulsifier produced by Acinetobacter sp. BE-254. J Microbiol Biotechnol 6:184–188

    CAS  Google Scholar 

  • Knapp HR, Melly MA (1986) Bactericidal effects of polyunsaturated fatty acids. J Infect Dis 154:84–94

    Article  CAS  PubMed  Google Scholar 

  • Kuhn DM, Balkis MJ, Chandra J, Mukherjee PK, Ghannoum MA (2003) Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41:506–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in Rhodococci. Anton Leeuw Int J Gen Mol Biol 74:59–70

    Article  CAS  Google Scholar 

  • Lecithin WA (1995) Kirk-othmer encyclopedia of chemical technology. Wiley-Interscience, New York

    Google Scholar 

  • Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y (2015) A review on phospholipids and their main applications in drug delivery systems. Asian J Pharmaceut Sci 10:81–98

    Google Scholar 

  • Liang H, Xing Y, Chen J et al (2012) Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complement Altern Med 12:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima TA, Etchegaray A, Machini MT (2020) Design, synthesis and valued properties of surfactin oversimplified analogues. Amino Acids 52:25–33

    Article  CAS  PubMed  Google Scholar 

  • Marston A (2011) Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr A 1218:2676–2683

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Bosch P, Parra JL, Espuny MJ, Virgili A (1991) Structure and bioconversion of trehalose lipids. Carbohydr Res 220:93–100

    Article  CAS  Google Scholar 

  • Meena KR, Sharma A, Kanwar SS (2020) Antitumoral and antimicrobial activity of Surfactin extracted from Bacillus subtilis KLP2015. Int J Pept Res Ther 26:423–433

    Article  CAS  Google Scholar 

  • Meletiadis J, Meis JFGM, Mouton JW, Verweij PE (2001) Analysis of growth characteristics of filamentous fungi in different nutrient media. J Clin Microbiol 39:478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Mohd Hafez Mohd I, Nur Hashimah S, Najeeb KNA, Fahd AA, Mohd Sahaid K (2020) Evaluation of antibacterial potential of biosurfactant produced by surfactin-producing Bacillusisolated from selected Malaysian fermented foods. Food Biotechnol 34(1):1–24

    Article  CAS  Google Scholar 

  • Monteiro MC, de la Cruz M, Cantizani J (2012) A new approach to drug discovery: high-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J Biomol Screen 17:524–529

    Article  CAS  Google Scholar 

  • Nijs A, Cartuyvels R, Mewis A, Peeters V, Rummens JL, Magerman K (2003) Comparison and evaluation of Osiris and Sirscan 2000 antimicrobial susceptibility Systems in the Clinical Microbiology Laboratory. J Clin Microbiol 41:3627–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III Structural elucidation of plipastatins. J Antibiot (Tokyo) 39:755–761

    Article  CAS  Google Scholar 

  • Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, Adeli-Sardou M (2020) Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb Pathog 138:103806–103816

    Article  CAS  PubMed  Google Scholar 

  • Paltauf F, Hermetter A (1990) Phospholipids natural, semisynthetic, synthetic [M]. In: Phospholipids. Springer, Berlin, pp 1–12

    Google Scholar 

  • Peypoux F, Pommier MT, Das BC, Besson F, Delcambe L, Michel G (1984) Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J Antibiot (Tokyo) 37:1600–1604

    Article  CAS  Google Scholar 

  • Pitner JB, Timmins MR, Kashdan M, Nagar M, Stitt DT (2000) High-throughput assay system for the discovery of antibacterial drugs. In: AAPS proceedings. BD Biosciences, San Diego, CA

    Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037. https://doi.org/10.1111/j.1574-6976.2010.00221.x

    Article  CAS  PubMed  Google Scholar 

  • Rapp P, Beck CH, Wagner F (1979) Formation of exopolysaccharides by Rhodococcus erythropolis and partial characterization of a heteropolysaccharide of high molecular weight. Eur J Appl Microbiol Biotechnol 7:67–78

    Article  CAS  Google Scholar 

  • Rikalovic MG, Vrvic MM, Karadzic IM (2015) Rhamnolipid biosurfactant from Pseudomonas aeruginosa – from discovery to application in contemporary technology. J Serb Chem Soc 80(3):279–304

    Article  CAS  Google Scholar 

  • Rodriguez-Tudela JL, Chryssanthou E, Petrikkou E (2003) Interlaboratory evaluation of hematocytometer method of inoculum preparation for testing antifungal susceptibilities of filamentous fungi. J Clin Microbiol 41:5236–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3(4):229–236

    Google Scholar 

  • Rosenberg E, Ron EZ (1999) High and low molecular mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  PubMed  Google Scholar 

  • Sado Kamdem SL, Vannini L, Guerzoni E (2009) Effect of alpha-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. Int J Food Microbiol 129(3):288–294

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45:231–241

    Article  PubMed  CAS  Google Scholar 

  • Shah V, Badia D, Ratsep P (2007) Sophorose lipids having enhanced antibacterial activity. Antimicrob Agents Chemother 51:397–400

    Article  CAS  PubMed  Google Scholar 

  • Shapiro D (1962) Flowers H studies on sphingolipids. VII Synthesis and configuration of natural sphingomyelins. J Am Chem Soc 84:1047–1050

    Article  CAS  Google Scholar 

  • Sharma D, Saharan BS (2016) Functional characterization of biomedical potential of biosurfactant produced by lactobacillus helveticus. Biotechnol Rep 11:27–35

    Article  Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45(14):1522–1554

    Article  CAS  Google Scholar 

  • Shete AM, Wadhawa G, Banat IM, Chopade BA (2006) Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Ind Res 65:91–115

    Google Scholar 

  • Sheu CW, Freese E (1971) Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol 111:516–524

    Article  Google Scholar 

  • Sood U, Singh DN, Hira P, Lee JK, Kalia VC, Lal R, Shakarad M (2020) Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J Biotechnol 307:98–106

    Article  CAS  PubMed  Google Scholar 

  • Soussi S, Essid R, Hardouin J (2019) Utilization of grape seed flour for antimicrobial Lipopeptide production by Bacillus amyloliquefaciens C5 strain. Appl Biochem Biotechnol 187:1460–1474

    Article  CAS  PubMed  Google Scholar 

  • Stulnig TM, Huber J, Leitinger N, Imre EM, Angelisova P, Nowotny P, Waldhausl W (2001) Polyunsaturated Eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem 276:37335–37340

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Xie W, Xu P (2004) Superoxide anion scavenging activity of graft chitosan derivatives. Carbohydr Polym 58:379–382

    Article  CAS  Google Scholar 

  • Tally FP, Zeckel M, Wasilewski MM, Carini C, Berman CL, Drusano GL (1999) Daptomycin: a novel agent for gram-positive infections. Expert Opin Investig Drugs 8:1223–1238

    Article  CAS  PubMed  Google Scholar 

  • Tulloch AP, Hill A, Spencer JFT (1967) A new type of macrocyclic lactone from Torulopsis apicola. Chem Commun 7:584–586

    Google Scholar 

  • Umezawa H, Takeuch T, Hamada M, Ishizuka M, Chimura H, Maeda K (1971) Antibiotic macromomycin and process for making same. Patents US3595954A

    Google Scholar 

  • Waghmode S, Swami S, Sarkar D (2020) Exploring the pharmacological potentials of biosurfactant derived from Planococcus maritimus SAMP MCC 3013. Curr Microbiol 77:452–459

    Article  CAS  PubMed  Google Scholar 

  • Wang RF, Cao WW, Johnson MG (1992) 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Appl Environ Microbiol 58(9):2827–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajic JE, Seffens W (1983) Biosurfactants. CRC Crit Rev Biotechnol 1(2):87–107

    Article  Google Scholar 

  • Zhao YH, Chen LY, Tian ZJ, Sun Y (2016) Characterization and application of a novel bioemulsifier in crude oil degradation by Acinetobacter beijerinckii ZRS. J Basic Microbiol 56:184–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by DST-SERB research grant (File no. EEQ/2018/000964). DM thanks DST-SERB for his fellowship. The authors would like to thank the Department of Chemistry, The University of Burdwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, D., Rooj, B., Mandal, U. (2021). Antibacterial Biosurfactants. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Microbial Biosurfactants. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6607-3_13

Download citation

Publish with us

Policies and ethics