Skip to main content

Application of Microbial Biosurfactants in the Pharmaceutical Industry

  • Chapter
  • First Online:
Microbial Biosurfactants

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Numerous studies on the characterization and application of microbial biosurfactants have been carried out. Low in toxicity, environmental compatibility, and higher biodegradability of biosurfactants make them an attractive choice for numerous applications. Their structural novelty, diverse properties, and versatility make them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. Biosurfactants like glycolipids or lipopeptides are able to damage cell membranes and inhibit the proliferation of cancerous cells, which eventually lead to cell lysis via apoptosis pathways. As drug delivery molecules, biosurfactants can have promising applications in the biomedical field. Surfactin, a lipopeptide biosurfactant, exhibits interesting properties like insecticidal, anti-microbial, antitumor, and anti-mycoplasma activities. In this chapter, the current status of biosurfactant research for its potential application in pharmaceutical industry is discussed. Potential for the development of biosurfactants as novel molecules with multifarious functions and numerous applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arutchelvi J, Sangeetha J, Philip J, Doble M (2014) Self-assembly of surfactin in aqueous solution: role of divalent counterions. Colloids Surf B Biointerfaces 116:396–402

    Article  CAS  PubMed  Google Scholar 

  • Augustin M, Hippolyte MT (2012) Screening of biosurfactants properties of cell-free supernatants of cultures of Lactobacillus spp. isolated from a local fermented milk (Pendidam) of Ngaoundere (Cameroon). Int J Eng Res Appl 2:974–985

    Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles. Article ID 689419. https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Banat A, Franzetti I, Gandolfi G, Bestetti MG, Martinotti L, Fracchia TJ, Smyth R, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Bezza FA, Tichapondwa SM, Chirwa EMN (2020) Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. J Hazard Mater 393:122319

    Article  CAS  PubMed  Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ et al (2007) Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 75:4020–4029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucci AR, Marcelino L, Mendes RK, Etchegaray A (2018) The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens. World J Microbiol Biotechnol 34:86

    Article  PubMed  CAS  Google Scholar 

  • Cameotra SS, Makkar RS, Kaur J, Mehta SK (2010) Synthesis of biosurfactants and their advantages to microorganisms and mankind. In: Sen R (ed) Biosurfactants. Advances in experimental medicine and biology, vol 672. Springer, New York, pp 261–280

    Google Scholar 

  • Cao XH, Liao ZY, Wang CL, Yang WY, Lu MF (2009) Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz J Microbiol 40:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao XH, Wang AH, Wang CL et al (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362

    Article  CAS  PubMed  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta Biomembr 1611:91–97

    Article  CAS  Google Scholar 

  • Ceresa C, Tessarolo F, Caola I, Nollo G et al (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 118:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Ceresa C, Fracchia L, Williams M, Banat IM, Díaz De Rienzo MA (2020) The effect of sophorolipids against microbial biofilms on medical-grade silicone. J Biotechnol 309:34–43

    Article  CAS  PubMed  Google Scholar 

  • Chandler S, Van Hese N, Coutte F, Jacques P, Höfte M, Vleesschauwer DD (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91:20–30

    Article  CAS  Google Scholar 

  • Chen G (2004) Rhamnolipid biosurfactant behavior in solutions. J Biomater Sci Polym Ed 15(2):229–235

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhifei LU, An Z, Ji P, Liu X (2020) Antibacterial activities of sophorolipids and nisin and their combination against foodborne pathogen Staphylococcus aureus. Eur J Lipid Sci Technol 122:1900333

    Article  CAS  Google Scholar 

  • Cheng A, Sun L, Xu X, Lou H (2009) The inhibitory effect of a macrocyclic bisbibenzyl riccardin D on the biofilms of Candida albicans. Biol Pharm Bull 32:1417–1421

    Article  CAS  PubMed  Google Scholar 

  • Chiewpattanakul P et al (2010) Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80. J Microbiol Biotechnol 20:1664–1671

    CAS  PubMed  Google Scholar 

  • Craig VSJ, Ninham BW, Pashley RM (1993) Effect of electrolytes on bubble coalescence. Nature 364:317–319

    Article  CAS  Google Scholar 

  • Csizmazia E et al (2012) Ibuprofen penetration enhance by sucrose ester examined by ATR–FTIR in vivo. Pharm Dev Technol 17:125–128

    Article  CAS  PubMed  Google Scholar 

  • Da Silva IA, Bezerra KGO, Durval IJB, Farias CBB et al (2020) Evaluation of the emulsifying and antioxidant capacity of the biosurfactant produced by candida bombicola URM 3718. Chem Eng Trans 79:67–72

    Google Scholar 

  • Dalili D, Amini M, Faramarzi MA, Fazeli MR, Khoshayand MR, Samadi N (2015) Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids Surf B Biointerfaces 135:425–432

    Article  CAS  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira DWF, Franca IWL, Felix AKN et al (2013) Kinetic study of biosurfactant production by Bacillus subtilis Lami005 grown in clarified cashew apple juice. Colloids Surf B Biointerfaces 101:34–43

    Article  PubMed  CAS  Google Scholar 

  • Duarte C, Gudiña EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elshikh M, Moya-Ramírez I, Moens H et al (2017) Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol 123(5):1111–1123

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Swift S, Singhal N (2013) Effects of surfactants on cell surface tension parameters and hydrophobicity of pseudomonas putida 852 and Rhodococcus erythropolis 3586. Colloids Surf B Biointerfaces 105:43–50

    Article  CAS  PubMed  Google Scholar 

  • Fu SL et al (2008) Sophorolipids and their derivatives are lethal against human pancreatic cancer cells. J Surg Res 148:77–82

    Article  CAS  PubMed  Google Scholar 

  • Gangwar M et al (2012) Recent advances in various emerging vesicular systems: an overview. Asian Pac J Trop Biomed 2:S1176–S1188

    Article  Google Scholar 

  • Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK et al (2019) Biosynthesis and characterization of sophorolipid biosurfactant by candida spp.: application as food emulsifier and antibacterial agent. Bioresour Technol 285:121314

    Article  CAS  PubMed  Google Scholar 

  • Gaur VK, Tripathi V, Gupta P, Dhiman N, Regar RK, Gautam K, Srivastava JK, Patnaik S et al (2020) Rhamnolipids from Planococcus spp. and their mechanism of action against pathogenic bacteria. Bioresour Technol 307:123206

    Article  CAS  PubMed  Google Scholar 

  • Giri SS, Ryu EC, Sukumaran V, Park SC (2019) Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microb Pathog 132:66–72

    Article  CAS  PubMed  Google Scholar 

  • Gomes MZV, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447

    Article  CAS  Google Scholar 

  • González-Jaramillo LM, Aranda FJ, Teruel JA, Villegas-Escobar V, Ortiz A (2017) Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 156:114–122

    Article  PubMed  CAS  Google Scholar 

  • Goussous SA, Casford MTL, Murphy AC et al (2017) Structure of the fundamental lipopeptide surfactin at the air/water interface investigated by sum frequency generation spectroscopy. J Phys Chem B 121(19):5072–5077

    Article  CAS  PubMed  Google Scholar 

  • Grau A, Fernández JCG, Peypoux F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta Biomembr 1418:307–319

    Article  CAS  Google Scholar 

  • Gudiña EJ, Rodrigues LR (2019) Microbial surfactants: alternative to vegetable oil surfactants. In: Balan V (ed) Microbial lipid production. Methods in molecular biology, vol 1995. Humana Press, New York, NY

    Google Scholar 

  • Gudiña E, Rocha V, Teixeira J, Rodrigues L (2010) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 50:419–424

    Article  PubMed  CAS  Google Scholar 

  • Gudiña EJ, Fernandes EC, Teixeira JA, Rodrigues LR (2015) Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv 5:90960–90968

    Article  Google Scholar 

  • Gudiña EJ, Teixeira JA, Rodrigues LR (2016) Biosurfactants produced by marine microorganisms with therapeutic applications. Mar Drugs 14:38. https://doi.org/10.3390/md14020038

    Article  CAS  PubMed Central  Google Scholar 

  • Gupta S, Raghuwanshi N, Varshney R, Banat IM et al (2017) Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute. Biomed Pharmacother 94:1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Haque F, Sajid M, Cameotra SS, Battacharyya MS (2017) Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling 33:768–779

    Article  CAS  PubMed  Google Scholar 

  • Heeres AS, Picone CS, van der Wielen LA, Cunha RL, Cuellar MC (2014) Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol 32(4):221–229

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36:305–314

    Article  CAS  PubMed  Google Scholar 

  • Helvaci SS, Peker S, Ozdemir G (2004) Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids Surf B Biointerfaces 35:225–233

    Article  CAS  PubMed  Google Scholar 

  • Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Lang Y, Hakeem A, Lei Y et al (2018) Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int J Nanomedicine 13:1723–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung HC, Shreve GS (2001) Effect of the hydrocarbon phase on interfacial and thermodynamic properties of two anionic glycolipid biosurfactants in hydrocarbon/water systems. J Phys Chem B 105(50):12596–12600

    Article  CAS  Google Scholar 

  • Isoda H et al (1997) Microbial extracellular glycolipid induction of differentiation and inhibition of protein kinase C activity of human promyelocytic leukaemia cell line HL60. Biosci Biotechnol Biochem 61:609–614

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili J (1994) The science and applications of emulsions—an overview. Colloids Surf A Physicochem Eng Asp 91:1–8

    Article  CAS  Google Scholar 

  • Jahan R, Bodratti AM, Tsianou M, Alexandridis P (2020) Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci 275:102061

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Mondal S, Kulkarni SS (2017) Chemical synthesis of biosurfactant succinoyl trehalose lipids. Org Lett 19:1784–1787

    Article  CAS  PubMed  Google Scholar 

  • Janek T, Rodrigues LR, Czyznikowska Z (2018) Study of metal-lipopeptide complexes and their self-assembly behavior, micelle formation, interaction with bovine serum albumin and biological properties. J Mol Liq 268:743–753

    Article  CAS  Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 184:109607

    Article  CAS  PubMed  Google Scholar 

  • Kaizu K, Alexandridis P (2016) Effect of surfactant phase behavior on emulsification. J Colloid Interface Sci 466:138–149

    Article  CAS  PubMed  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Krupanidhi S, Rohini KK (2020) Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter indicus M6 strain. J King Saud Univ Sci 32:223–227

    Article  Google Scholar 

  • Khan R, Irichhaiya R (2016) Niosomes: a potential tool for novel drug delivery. J Pharm Investig 46:195–204

    Article  CAS  Google Scholar 

  • Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14(5):315–328

    Article  CAS  Google Scholar 

  • Kolev VL, Danov KD, Kralchevsky PA, Broze G, Mehreteab A (2002) Comparison of the van der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations. Langmuir 18(23):9106–9109

    Article  CAS  Google Scholar 

  • Kracht M, Rokos H, Ozel M et al (1999) Antiviral and haemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52:613–619

    Article  CAS  Google Scholar 

  • Krishnan N, Velramar B, Pandiyan R, Velu RK (2018) Anti-pseudomonal and anti-endotoxic effects of surfactin-stabilized biogenic silver nanocubes ameliorated wound repair in streptozotocin-induced diabetic mice. Artif Cells Nanomed Biotechnol 46:488–499

    Article  CAS  PubMed  Google Scholar 

  • Lahkar J, Goswami D, Deka S, Ahmed G (2018) Novel approaches for application of biosurfactant produced by Pseudomonas aeruginosa for biocontrol of Colletotrichum capsici responsible for anthracnose disease in chilli. Eur J Plant Pathol 150(1):57–71

    Article  CAS  Google Scholar 

  • Liu C, Xu Q, Yu S, Cheng J, Yuan Y (2020) Bio-removal of tetracycline antibiotics under the consortium with probiotics Bacillus clausii T and Bacillus amyloliquefaciens producing biosurfactants. Sci Total Environ 710:136329. https://doi.org/10.1016/j.scitotenv.2019.136329

    Article  CAS  PubMed  Google Scholar 

  • Long X, He N, He Y, Jiang J et al (2017) Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresour Technol 241:200–206

    Article  CAS  PubMed  Google Scholar 

  • Lovaglio RB, dos Santos FJ, Jafelicci M, Contiero J (2011) Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf B Biointerfaces 85(2):301–305

    Article  CAS  PubMed  Google Scholar 

  • Lydon HL, Baccile N, Callaghan B, Marchant R et al (2017) Adjuvant antibiotic activity of acidic sophorolipids with potential for facilitating wound healing. Antimicrob Agents Chemother 61:e02547–e02516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maget-Dana R, Ptak M (1995) Interactions of surfactin with membrane models. Biophys J 68:1937–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manko D, Zdziennicka A, Janczuk B (2014) Thermodynamic properties of rhamnolipid micellization and adsorption. Colloids Surf B Biointerfaces 119:22–29

    Article  CAS  PubMed  Google Scholar 

  • Marangon CA, Martins VCA, Ling MH, Melo CC, Plepis AMG, Meyer RL, Nitschke M (2020) Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces 12(5):5488–5499

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605

    Article  CAS  PubMed  Google Scholar 

  • Martins PC, Martins VG (2018) Biosurfactant production from industrial wastes with potential remove of insoluble paint. Int Biodeter Biodegr 127:10–16

    Article  CAS  Google Scholar 

  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanism. Virulence 4:119–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena KR, Sharma A, Kanwar SS (2020) Antitumoral and antimicrobial activity of Surfactin extracted from Bacillus subtilis KLP2015. Int J Pept Res Ther 26:423–433

    Article  CAS  Google Scholar 

  • Morya VK, Ahn C, Jeon S, Kim EK (2013) Medicinal and cosmetic potentials of sophorolipids. Mini Rev Med Chem 13(12):1761–1768

    Article  CAS  PubMed  Google Scholar 

  • Moryl M, Spetana M, Dziobek K, Paraszkiewicz K et al (2015) Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Acta Biochim Pol 62:725–732

    Article  CAS  PubMed  Google Scholar 

  • Naughton P, Marchant R, Naughton V, Banat I (2019) Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 127:12–28

    Article  CAS  PubMed  Google Scholar 

  • Neu T, Marshall KC (1990) Bacterial polymers: physicochemical aspects of their interactions at interfaces. J Biomater Appl 5:107–133

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Costa S, Contiero J (2011) Rhamnolipids and PHAs: recent reports on pseudomonas-derived molecules of increasing industrial interest. Process Biochem 46(3):621–630

    Article  CAS  Google Scholar 

  • Ohadi M, Forootanfar H, Rahimi HR et al (2017) Antioxidant potential and wound healing activity of biosurfactant produced by Acinetobacter junii B6. Curr Pharm Biotechnol 18:900–908

    Article  CAS  PubMed  Google Scholar 

  • Ohadi M, Forootanfar H, Dehghannoudeh G et al (2020) Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb Pathog 138:103806

    Article  CAS  PubMed  Google Scholar 

  • Onaizi SA, Nasser MS, Al-Lagtah NMA (2016) Benchmarking the self-assembly of surfactin biosurfactant at the liquid-air interface to those of synthetic surfactants. J Surfactant Deterg 19:645–652

    Article  CAS  Google Scholar 

  • Palanisamy P (2008) Biosurfactant mediated synthesis of NiO nanorods. Mater Lett 62:743–746

    Article  CAS  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Oxfordshire, pp 53–70

    Chapter  Google Scholar 

  • Preetha A et al (2005) Surface activity, lipid profiles and their implications in cervical cancer. J Cancer Res Ther 1:180–186

    Article  CAS  PubMed  Google Scholar 

  • Raza ZA, Khalid ZM, Khan MS, Banat IM et al (2010) Surface properties and sub-surface aggregate assimilation of rhamnolipid surfactants in different aqueous systems. Biotechnol Lett 32(6):811–816

    Article  CAS  PubMed  Google Scholar 

  • Razafindralambo H, Dufour S, Paquot M, Deleu M (2009) Thermodynamic studies of the binding interactions of surfactin analogues to lipid vesicles application of isothermal titration calorimetry. J Therm Anal Calorim 95(3):817–821

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Salman JAS, Alimer AD (2014) Lactobacillus rhamnosus against some bacteria causing utiiniraqi women. Int J Curr Res 6:5368–5374

    CAS  Google Scholar 

  • Sambanthamoorthy K, Feng X, Patel R, Patel S et al (2014) Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol 14:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM et al (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401. https://doi.org/10.3390/ijms17030401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos VSV, Silveira E, Pereira BB (2018) Toxicity and applications of surfactin for health and environmental biotechnology. J Toxicol Environ Health Pt B 21(6–8):382–399

    Article  CAS  Google Scholar 

  • Saravanakumari P, Mani K (2010) Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol 101:8851–8854

    Article  CAS  PubMed  Google Scholar 

  • Satpute SK, Kulkarni GR, Banpurkar AG et al (2016) Biosurfactant/s from lactobacilli species: properties, challenges and potential biomedical applications. J Basic Microbiol 56:1140–1158

    Article  PubMed  Google Scholar 

  • Sen R (2010) Surfactin: biosynthesis, genetics and potential applications. In: Sen R (ed) Biosurfactants. Springer, New York, pp 316–323

    Chapter  Google Scholar 

  • Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133

    Google Scholar 

  • Seydlová G, ÄŒabala R, Svobodová J (2011) Surfactin—novel solutions for global issues. In: biomedical engineering, trends, research and technologies, 1st edn. InTechOpen, London. https://doi.org/10.5772/13015

    Chapter  Google Scholar 

  • Shao L, Song X, Ma X, Li H, Qu Y (2012) Bioactivities of Sophorolipid with different structures against human Esophageal Cancer cells. J Surg Res 173:286–291

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Saharan BS (2016) Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep 11:27–35

    Article  Google Scholar 

  • Shu Q, Niu Y, Zhao W, Chen Q (2019) Antibacterial activity and mannosylerythritol lipids against vegetative cells and spores of Bacillus cereus (2019). Food Control 106:106711

    Article  CAS  Google Scholar 

  • Singh BR, Dwivedi S, Al-Khedhairy AA, Musarrat J (2011) Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloids Surf B Biointerfaces 85:207–213

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Hirashima N, Inoh Y, Furuno T, Nakanishi M (2007) Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol Pharm Bull 30(1):169–172

    Article  CAS  PubMed  Google Scholar 

  • Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol 61:214–223

    Article  CAS  PubMed  Google Scholar 

  • Vecino X, Rodríguez-López L, Ferreira D, Cruz JM, Moldes AB, Rodrigues LR (2018) Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int J Biol Macromol 109:971–979

    Article  CAS  PubMed  Google Scholar 

  • Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  CAS  PubMed  Google Scholar 

  • Waghmode S, Swami S, Sarkar D, Suryavanshi M et al (2020) Exploring the pharmacological potentials of biosurfactant derived from Planococcus maritimus SAMP MCC 3013. Curr Microbiol 77:452–459

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gao J, Zhao X, Qi G (2016) A natural lipopeptide of surfactin for oral delivery of insulin. Drug Deliv 23:2084–2093

    Article  CAS  PubMed  Google Scholar 

  • Zhao X et al (2000) Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis. Cytotechnology 33:123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zouari R, Hamden K, Feki AE et al (2016) Protective and curative effects of Bacillus subtilis SPB1 biosurfactant on high-fat-high-fructose diet induced hyperlipidemia, hypertriglyceridemia and deterioration of liver function in rats. Biomed Pharmacother 84:323–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. S. Giri acknowledges the ‘Korea Research Fellowship Program’ (KRF: 2016H1D3A1909005) of National Research Foundation of Korea, Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giri, S.S. (2021). Application of Microbial Biosurfactants in the Pharmaceutical Industry. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Microbial Biosurfactants. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6607-3_12

Download citation

Publish with us

Policies and ethics