Skip to main content

Mesenchymal Stem Cell–Derived Exosomes and Regenerative Medicine

  • Chapter
  • First Online:
Role of Exosomes in Biological Communication Systems

Abstract

Stem cells were recently proposed as the magical therapy for most of the diseases. This magical power is attributed to its dual regenerative potential as it can act locally and remotely as well. A deeper understanding of stem cells’ mechanism of action revealed that stem cells can act remotely through elaborating small particles containing specific codes/messengers for regeneration called exosomes. Exosomes derived from stem cells have been demonstrated to enhance proliferation, migration, and angiogenesis due to its unique content of bioactive proteins, lipids, growth factors, cytokines, and a large variety of nucleic acid. More recently, using exosome as a drug delivery device targeting specific factors that are required for regeneration can be engineered by genetically modifying the parent stem cells. Herein, we throw light on exosomes derived from mesenchymal stem cells, their biogenesis, characteristics, its content, and how this can correlate to its potential therapeutic effect in tissue regeneration. Recently, the exosomes market became one of the fast-growing therapeutic markets and a lot of attempts are ongoing to develop and optimize off-the-shelf exosomes. Thus, we have also highlighted the different factors that influence the quality of isolated exosomes, as this will be critical in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose-derived stem cells

Ago:

Argonaute

BMP:

Bis(monoacylglycero)phosphate

BMP-2:

Bone morphogenic protein 2

BMSCs:

Bone marrow–derived stem cells

Col:

Collagen

DPSCs:

Dental pulp stem cells

EMMPRIN:

Extracellular matrix metalloproteinase inducer

ESCRT:

Endosomal sorting complexes required for transport

FDA:

Food and Drug Administration

HDAC6:

Histone deacetylase 6

hEnMSCs:

Human endometrial MSCs

HES-1:

Hairy and enhancer of split 1

HGF:

Hepatocyte growth-factor

HMGB1:

High-mobility group box 1 protein

HUVECs:

Human umbilical vein endothelial cells

IL:

Interleukin

ILVs:

Intraluminal vesicles

IVDD:

Intervertebral disc degeneration

MMPs:

Matrix metalloproteinases

MSCs:

Mesenchymal stem cells

MVBs:

Multivesicular bodies

NPC:

Neural progenitor cells

NSCs:

Neural stem cells

NTA:

Nanoparticle tracking analysis

OA:

Osteoarthritis

OPN :

Osteopontin

RUNX-2 :

Runt-related transcription factor 2

SCE:

Stem cell–derived exosome

TCF-4:

T-cell factor 4

TEIR:

Total Exosome Isolation Reagent

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TSG-6:

TNF-α-stimulated gene 6

UC-MSCs:

Umbilical cord stem cells

VEGF:

Vascular endothelial growth factor

References

  • Adamiak M, Cheng G, Bobis-Wozowicz S, Zhao L, Kedracka-Krok S, Samanta A, Karnas E, Xuan YT, Skupien-Rabian B, Chen X, Jankowska U, Girgis M, Sekula M, Davani A, Lasota S, Vincent RJ, Sarna M, Newell KL, Wang OL, Dudley N, Madeja Z, Dawn B, Zuba-Surma EK (2018) Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res 122(2):296–309

    Article  CAS  PubMed  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci 108(12):5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Lanzón MP, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N (2015) Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6(1):127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahr MM, Amer MS, Abo-El-Sooud K, Abdallah AN, El-Tookhy OS (2020) Preservation techniques of stem cells extracellular vesicles: a gate for manufacturing of clinical grade therapeutic extracellular vesicles and long-term clinical trials. Int J Veter Sci Med 8(1):1–8

    Article  Google Scholar 

  • Bakhtyar N, Jeschke MG, Herer E, Sheikholeslam M, Amini-Nik S (2018) Exosomes from acellular Wharton’s jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res Ther 9(1):193–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, Buscher D, Fibbe W, Foussat A, Kwa M, Lantz O, Maciulaitis R, Palomaki T, Schneider CK, Sensebe L, Tachdjian G, Tarte K, Tosca L, Salmikangas P (2013) Risk of tumorigenicity in mesenchymal stromal cell-based therapies—bridging scientific observations and regulatory viewpoints. Cytotherapy 15(7):753–759

    Article  PubMed  Google Scholar 

  • Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 107(31):13724–13729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bebelman MP, Smit MJ, Pegtel DM, Baglio SR (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bucan V, Vaslaitis D, Peck CT, Strauss S, Vogt PM, Radtke C (2019) Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol Neurobiol 56(3):1812–1824

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    Article  CAS  PubMed  Google Scholar 

  • Carreras A, Almendros I, Montserrat JM, Navajas D, Farre R (2010) Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea. Respir Physiol Neurobiol 172(3):210–212

    Article  CAS  PubMed  Google Scholar 

  • Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol 11(4):466–475

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, Gu C, Chen J, Qiu P, Mei S, Ning L, Shi Y, Fang C, Fan S, Lin X (2019a) Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 9(9):2439–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y (2019b) Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 52(5):e12669

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zheng Y, Zhang S, Jia L, Zhou Y (2017) Promotion Effects of miR-375 on the osteogenic differentiation of human adipose-derived mesenchymal stem cells. Stem Cell Reports 8(3):773–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xue K, Zhang X, Zheng Z, Liu K (2018) Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells. Stem Cell Res Ther 9(1):318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CW, Adams GB, Perin L, Wei M, Zhou X, Lam BS, Da Sacco S, Mirisola M, Quinn DI, Dorff TB, Kopchick JJ, Longo VD (2014) Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14(6):810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM, Falcon-Perez JM (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 7(12):5157–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DR, Wang C, Patel R, Trujillo A, Patel NA, Prather J, Gould LJ, Wu MH (2018) Human adipose-derived stem cell conditioned media and exosomes containing MALAT1 promote human dermal fibroblast migration and ischemic wound healing. Adv Wound Care 7(9):299–308

    Article  Google Scholar 

  • Costantini D, Overi D, Casadei L, Cardinale V, Nevi L, Carpino G, Di Matteo S, Safarikia S, Valerio M, Melandro F, Bizzarri M, Manetti C, Berloco PB, Gaudio E, Alvaro D (2019) Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Sci Rep 9(1):5559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Souza-Schorey C, Schorey JS (2018) Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem 62(2):125–133

    Article  PubMed  Google Scholar 

  • Deng H, Sun C, Sun Y, Li H, Yang L, Wu D, Gao Q, Jiang X (2018) Lipid, protein, and MicroRNA composition within mesenchymal stem cell-derived exosomes. Cell Reprogram 20(3):178–186

    Article  CAS  PubMed  Google Scholar 

  • Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788

    Article  CAS  PubMed  Google Scholar 

  • Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O'Brien D, van Wijnen AJ, Lerman LO (2014) MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene 551(1):55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkhenany H, Amelse L, Caldwell M, Abdelwahed R, Dhar M (2016) Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering. J Animal Sci Biotechnol 7(1):16

    Article  CAS  Google Scholar 

  • Elliott GD, Wang S, Fuller BJ (2017) Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91

    Article  CAS  PubMed  Google Scholar 

  • Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P (2012) The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 30(8):1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Shi XF, Sun HY, Li YX, Xiao FJ, Wang H, Wang LS (2018) Effects of exosomes derived from miR-486 gene modified umbilical cord mesenchymal stem cells on biological characteristics of rat cardiomyocytes. Zhongguo Shi Yan Xue Ye Xue Za Zhi 26(5):1531–1537

    PubMed  Google Scholar 

  • Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, Nguyen J (2018) The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 8(1):1419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, Millard RW, Xiao DS, Ashraf M, Xu M (2017) Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8(28):45200–45212

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot M-C, Wollacott R, Sapp E, Dubuke ML, Li X (2018) Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther 26(12):2838–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl F-U, Hlodan R, Langer T (1994) Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci 19(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571–580

    Article  CAS  PubMed  Google Scholar 

  • Hemler ME (2008) Targeting of tetraspanin proteins—potential benefits and strategies. Nat Rev Drug Discov 7(9):747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini-Farahabadi S, Geetha-Loganathan P, Fu K, Nimmagadda S, Yang HJ, Richman JM (2013) Dual functions for WNT5A during cartilage development and in disease. Matrix Biol 32(5):252–264

    Article  CAS  PubMed  Google Scholar 

  • Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107(9):4335–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, Li HM, Zhang WS, Chen CY, Xie H (2018) Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 8(1):169–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Chubinskaya S, Liao W, Loeser RF (2017) Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Osteoarthr Cartil 25(9):1505–1515

    Article  CAS  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarmalaviciute A, Tunaitis V, Pivoraite U, Venalis A, Pivoriunas A (2015) Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 17(7):932–939

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L, Ørntoft TF, Howard KA, Ostenfeld MS (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3(1):25011

    Article  PubMed  CAS  Google Scholar 

  • Jo W, Jeong D, Kim J, Cho S, Jang SC, Han C, Kang JY, Gho YS, Park J (2014a) Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip 14(7):1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Jo W, Kim J, Yoon J, Jeong D, Cho S, Jeong H, Yoon YJ, Kim SC, Gho YS, Park J (2014b) Large-scale generation of cell-derived nanovesicles. Nanoscale 6(20):12056–12064

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RM, Adam M, Hammond J, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Yun H-W, Park DY, Choi BH, Min B-H (2018a) Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells. Tissue Eng Regenerat Med 15(4):427–436

    Article  CAS  Google Scholar 

  • Kim S, Lee SK, Kim H, Kim TM (2018b) Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int J Mol Sci 19(10)

    Google Scholar 

  • Kreke M, Smith R, Hanscome P, Kiel P, Ibrahim A (2017) Processes for producing stable exosome formulations, Google Patents

    Google Scholar 

  • Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, De Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:971907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131(Pt 3):616–629

    Article  PubMed  Google Scholar 

  • Li HY, Chien Y, Chen YJ, Chen SF, Chang YL, Chiang CH, Jeng SY, Chang CM, Wang ML, Chen LK, Hung SI, Huo TI, Lee SD, Chiou SH (2011) Reprogramming induced pluripotent stem cells in the absence of c-Myc for differentiation into hepatocyte-like cells. Biomaterials 32(26):5994–6005

    Article  CAS  PubMed  Google Scholar 

  • Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22(6):845–854

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zheng Y, Hou L, Zhou Z, Huang Y, Zhang Y, Jia L, Li W (2020) Exosomes derived from maxillary BMSCs enhanced the osteogenesis in iliac BMSCs. Oral Dis 26(1):131–144

    Article  PubMed  Google Scholar 

  • Li Z, Wang Y, Xiang S, Zheng Z, Bian Y, Feng B, Weng X (2019) Chondrocytes-derived exosomal miR-8485 regulated the Wnt/beta-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun 523(2):506–513

    Article  PubMed  CAS  Google Scholar 

  • Ling X, Zhang G, Xia Y, Zhu Q, Zhang J, Li Q, Niu X, Hu G, Yang Y, Wang Y, Deng Z (2020) Exosomes from human urine-derived stem cells enhanced neurogenesis via miR-26a/HDAC6 axis after ischaemic stroke. J Cell Mol Med 24(1):640–654

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Mahairaki V, Bai H, Ding Z, Li J, Witwer KW, Cheng L (2019) Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells. Stem Cells 37(6):779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv L, Zeng Q, Wu S, Xie H, Chen J, Jiang Guo X, Hao C, Zhang X, Ye M, Zhang L (2015) Chapter 8—exosome-based translational nanomedicine: the therapeutic potential for drug delivery. In: Tang Y, Dawn B (eds) Mesenchymal stem cell derived exosomes. Academic, Boston, pp 161–176

    Chapter  Google Scholar 

  • Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao L, Yu Y, Huang H, Hu Y, Yang Z (2018) MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int 2018:3290372

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas SL, Broekman ML, de Vrij J (2017) Tunable resistive pulse sensing for the characterization of extracellular vesicles. Methods Mol Biol 1545:21–33

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W, Kang Y (2018) Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther 9(1):247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu M, Martin-Jaular L, Lavieu G, Thery C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Pinheiro B, Anjo SI, Manadas B, Da Silva JD, Marote A, Behie LA, Teixeira FG, Salgado AJ (2019) Bone marrow mesenchymal stem cells’ secretome exerts neuroprotective effects in a Parkinson’s disease rat model. Front Bioeng Biotechnol 7:294–294

    Article  PubMed  PubMed Central  Google Scholar 

  • Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, Abu-Remaileh M, Clavain L, Erdemir A, Lewis CA, Freinkman E, Dickey AS, La Spada AR, Huang Y, Bell GW, Deshpande V, Carmeliet P, Katajisto P, Sabatini DM, Yilmaz OH (2018) Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22(5):769–778.e764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möbius W, Van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen H, Slot J, Geuze H (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4(4):222–231

    Article  PubMed  Google Scholar 

  • Moll G, Alm JJ, Davies LC, von Bahr L, Heldring N, Stenbeck-Funke L, Hamad OA, Hinsch R, Ignatowicz L, Locke M, Lonnies H, Lambris JD, Teramura Y, Nilsson-Ekdahl K, Nilsson B, Le Blanc K (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32(9):2430–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiga M, Guo H, Wu JC (2018) Induced pluripotent stem cells as a biopharmaceutical factory for extracellular vesicles. Eur Heart J 39(20):1848–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nooshabadi V (2019) Endometrial mesenchymal stem cell-derived exosome promote endothelial cell angiogenesis in a dose dependent manner: a new perspective on regenerative medicine and cell-free therapy. Arch Neurosci 6:e94041

    Google Scholar 

  • Otsuru S, Hofmann TJ, Raman P, Olson TS, Guess AJ, Dominici M, Horwitz EM (2015) Genomic and functional comparison of mesenchymal stromal cells prepared using two isolation methods. Cytotherapy 17(3):262–270

    Article  CAS  PubMed  Google Scholar 

  • Pansky A, Roitzheim B, Tobiasch E (2007) Differentiation potential of adult human mesenchymal stem cells. Clin Lab 53(1-2):81–84

    CAS  PubMed  Google Scholar 

  • Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman MD, Singh S, Singh AP (2019) Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep 9(1):5335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2000) The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301(4):1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Pill K, Hofmann S, Redl H, Holnthoner W (2015) Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regenerat 4:8

    Article  Google Scholar 

  • Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemova D, Ilkovics L, Hampl A, Crha I, Jandakova E (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles 4(1):25530

    Article  PubMed  CAS  Google Scholar 

  • Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV (2007) Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 25(7):1761–1768

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, Hu B, Wang Y, Li X (2016) Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci 12(7):836–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocelli M, Palazzolo G, Agnolin I, Martino S, Bouche M, Anastasia L, Sampaolesi M (2011) Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells. J Cell Biochem 112(8):2006–2014

    Article  CAS  PubMed  Google Scholar 

  • Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS (2015) MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 6:254–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawat S, Gupta S, Mohanty S (2019) Mesenchymal stem cells modulate the immune system in developing therapeutic interventions. Immune response activation. IntechOpen, Rijeka

    Google Scholar 

  • Sasaki A, Mizuno M, Ozeki N, Katano H, Otabe K, Tsuji K, Koga H, Mochizuki M, Sekiya I (2018) Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS One 13(8):e0202922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarzenbach H, Gahan PB (2019) MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Non-coding RNA 5(1):28

    Article  CAS  PubMed Central  Google Scholar 

  • Shamili FH, Bayegi HR, Salmasi Z, Sadri K, Mahmoudi M, Kalantari M, Ramezani M, Abnous K (2018) Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. Int J Pharm 549(1-2):218–229

    Article  CAS  PubMed  Google Scholar 

  • Shimaoka M, Kawamoto E, Gaowa A, Okamoto T, Park EJ (2019) Connexins and integrins in exosomes. Cancers 11(1):106

    Article  CAS  PubMed Central  Google Scholar 

  • Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R (2013) Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med 11:146–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skotland T, Hessvik NP, Sandvig K, Llorente A (2019) Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res 60(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Suárez H, Gámez-Valero A, Reyes R, López-Martín S, Rodríguez MJ, Carrascosa JL, Cabañas C, Borràs FE, Yáñez-Mó M (2017) A bead-assisted flow cytometry method for the semi-quantitative analysis of extracellular vesicles. Sci Rep 7(1):11271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51(8):2105–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Ma Y, Wang F, Hu L, Sun Y (2019) miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther 10(1):360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M (2015) Isolation of extracellular vesicles: determining the correct approach (Review). Int J Mol Med 36(1):11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH, Wang Q (2017) Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 40(3):834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304

    Article  CAS  PubMed  Google Scholar 

  • Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A (2019) Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther 10(1):105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  • Van Niel G, d'Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213

    Article  PubMed  CAS  Google Scholar 

  • Veceric-Haler Z, Cerar A, Perse M (2017) (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity. Stem Cells Int 2017:7304643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrijsen KR, Maring JA, Chamuleau SAJ, Verhage V, Mol EA, Deddens JC, Metz CHG, Lodder K, van Eeuwijk ECM, van Dommelen SM, Doevendans PA, Smits AM, Goumans M-J, Sluijter JPG (2016) Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis Via EMMPRIN. Adv Healthc Mater 5(19):2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang Y, Cloud C, Duke T, Owczarski S, Mehrotra S, Adams DB, Morgan K, Gilkeson G, Wang H (2019) Mesenchymal stem cells from chronic pancreatitis patients show comparable potency compared to cells from healthy donors. Stem Cells Transl Med 8(5):418–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Guo L, Ge J, Yu L, Cai T, Tian R, Jiang Y, Zhao R, Wu Y (2015) Excess integrins cause lung entrapment of mesenchymal stem cells. Stem Cells 33(11):3315–3326

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Yang YJ, Wang QH, Xie M, Yu XH, Liu CT, Wang X (2007a) Changes of Wnt-3 protein during the proliferation of endogenous neural stem cells in neonatal rats with hypoxic-ischemic brain damage after hyperbaric oxygen therapy. Zhongguo Dang Dai Er Ke Za Zhi 9(3):241–246

    CAS  PubMed  Google Scholar 

  • Wang XL, Yang YJ, Xie M, Yu XH, Liu CT, Wang X (2007b) Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. Neuroreport 18(16):1753–1756

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao R, Liu D, Deng W, Xu G, Liu W, Rong J, Long X, Ge J, Shi B (2018) Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII. Oxidative Med Cell Longev 2018:4971261

    Article  Google Scholar 

  • Xia C, Zeng Z, Fang B, Tao M, Gu C, Zheng L, Wang Y, Shi Y, Fang C, Mei S, Chen Q, Zhao J, Lin X, Fan S, Jin Y, Chen P (2019) Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic Biol Med 143:1–15

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Zhu Y, Huang J, Wang T, Wang F, Sun S (2019) Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis. Biol Open 8(5)

    Google Scholar 

  • Xiong L, Sun L, Zhang Y, Jin P, Yan J, Liu X (2019) Exosomes from bone marrow mesenchymal stem cells can alleviate early brain injury following subarachnoid hemorrhage through miRNA129-5p-HMGB1 pathway. Stem Cells Dev 29(4):212–221

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Wang Z, Liu L, Zhang B, Li B (2019) Exosomes derived from adipose tissue, bone marrow, and umbilical cord blood for cardioprotection after myocardial infarction. J Cell Biochem

    Google Scholar 

  • Yan L, Wu X (2019) Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Biol Toxicol

    Google Scholar 

  • Yoshida S, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ohashi F, Toyofuku T, Toda K, Sawa Y (2018) Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol Ther 26(11):2681–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L-L, Zhu J, Liu J-X, Jiang F, Ni W-K, Qu L-S, Ni R-Z, Lu C-H, Xiao M-B (2018) A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int

    Google Scholar 

  • Zhang W, Wang Y, Kong Y (2019) Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthalmol Vis Sci 60(1):294–303

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Yang YJ, Xu PR, Zheng XR, Wang QH, Chen CF, Yao Y (2011) The role of beta-catenin signaling pathway on proliferation of rats neural stem cells after hyperbaric oxygen therapy in vitro. Cell Mol Neurobiol 31(1):101–109

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Yang J, Yan W, Li Y, Shen Z, Asahara T (2016) Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. J Am Heart Assoc 5(1):e002856

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

No acknowledgments.

Funding: The authors received no specific funding for this work.

Disclosure of interests: All authors declare they have no conflict of interest.

This article does not contain any studies with human participants performed by any of the authors.

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Elkhenany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elkhenany, H., Gupta, S. (2021). Mesenchymal Stem Cell–Derived Exosomes and Regenerative Medicine. In: Alzahrani, F.A., Saadeldin, I.M. (eds) Role of Exosomes in Biological Communication Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6599-1_6

Download citation

Publish with us

Policies and ethics