Skip to main content

Understanding and Targeting Human Cancer Regulatory T Cells to Improve Therapy

  • Chapter
  • First Online:
T Regulatory Cells in Human Health and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1278))

Abstract

Regulatory T cells (Tregs) are critical in maintaining immune homeostasis under various pathophysiological conditions. A growing body of evidence demonstrates that Tregs play an important role in cancer progression and that they do so by suppressing cancer-directed immune responses. Tregs have been targeted for destruction by exploiting antibodies against and small-molecule inhibitors of several molecules that are highly expressed in Tregs—including immune checkpoint molecules, chemokine receptors, and metabolites. To date, these strategies have had only limited antitumor efficacy, yet they have also created significant risk of autoimmunity because most of them do not differentiate Tregs in tumors from those in normal tissues. Currently, immune checkpoint inhibitor (ICI)-based cancer immunotherapies have revolutionized cancer treatment, but the resistance to ICI is common and the elevation of Tregs is one of the most important mechanisms. Therapeutic strategies that can selectively eliminate Tregs in the tumor (i.e. therapies that do not run the risk of causing autoimmunity by affecting normal tissue), are urgently needed for the development of cancer immunotherapies. This chapter discusses specific properties of human Tregs under the context of cancer and the various ways to target Treg for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adeegbe DO, Nishikawa H (2013) Natural and induced T regulatory cells in cancer. Front Immunol 4:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, Stevanović S, Robbins PF, Rosenberg SA (2019) Tumor-infiltrating human CD4. Sci Immunol 4:eaao4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ai WZ, Hou JZ, Zeiser R, Czerwinski D, Negrin RS, Levy R (2009) Follicular lymphoma B cells induce the conversion of conventional CD4+ T cells to T-regulatory cells. Int J Cancer 124:239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allard D, Allard B, Stagg J (2020) On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer 8:e000186

    Article  PubMed  PubMed Central  Google Scholar 

  • Amedei A, Niccolai E, Benagiano M, Della Bella C, Cianchi F, Bechi P, Taddei A, Bencini L, Farsi M, Cappello P et al (2013) Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol Immunother 62:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Arce Vargas F, Furness AJS, Solomon I, Joshi K, Mekkaoui L, Lesko MH, Miranda Rota E, Dahan R, Georgiou A, Sledzinska A et al (2017) Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E, Solomon I, Lesko MH, Ruef N, Roddie C et al (2018) Fc effector function contributes to the activity of human anti-CTLA-4 Antibodies. Cancer cell 33:649–663.e644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396

    Article  CAS  PubMed  Google Scholar 

  • Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190:995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay NIH, Mosseri V, Laccourreye O, Bruneval P, Fridman WH et al (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472

    Article  CAS  PubMed  Google Scholar 

  • Barsheshet Y, Wildbaum G, Levy E, Vitenshtein A, Akinseye C, Griggs J, Lira SA, Karin N (2017) CCR8(+)FOXp3(+) Treg cells as master drivers of immune regulation. Proc Natl Acad Sci U S A 114:6086–6091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  CAS  PubMed  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Perez F, Kato Y, Gonzalez-Menendez I, Laino J, Ohbayashi M, Burggraf M, Krause M, Kirberg J, Iwakura Y, Martella M et al (2019) CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis. Sci Rep 9:9608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    CAS  PubMed  Google Scholar 

  • Borcherding N, Ahmed K, Voigt AP, Vishwakarma A, Kolb R, Kluz P, Pandey G, Gibson-Corley KN, Klesney-Tait J, Zhu Y et al (2018) Transcriptional heterogeneity in cancer-associated regulatory T cells is predictive of survival. BioRxiv, Cold Spring Harbor Laboratory

    Google Scholar 

  • Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily--CTLA-4. Nature 328:267–270

    Article  CAS  PubMed  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    CAS  PubMed  Google Scholar 

  • Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S, Knee DA, Wilson NS, Dranoff G, Brogdon JL (2013) Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med 210:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL (2014) OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy. Immunol Cell Biol 92:475–480

    Article  CAS  PubMed  Google Scholar 

  • Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290

    Article  CAS  PubMed  Google Scholar 

  • Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, Parmiani G, Belli F, Rivoltini L, Castelli C (2010) LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol 184:6545–6551

    Article  CAS  PubMed  Google Scholar 

  • Chamoto K, Hatae R, Honjo T (2020) Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int J Clin Oncol 25:790–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang DK, Peterson E, Sun J, Goudie C, Drapkin RI, Liu JF, Matulonis U, Zhu Q, Marasco WA (2016) Anti-CCR4 monoclonal antibody enhances antitumor immunity by modulating tumor-infiltrating Tregs in an ovarian cancer xenograft humanized mouse model. Oncoimmunology 5:e1090075

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary B, Elkord E (2016) Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel) 4:28

    Article  CAS  Google Scholar 

  • Chen J, Chen Z (2014) The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol 31:82

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Zhang D, Zhou J, Li Q, Zhou L, Li SM, Zhu L, Chou KY, Zhou L, Tao L, Lu LM (2013) High CCR6/CCR7 expression and Foxp3+ Treg cell number are positively related to the progression of laryngeal squamous cell carcinoma. Oncol Rep 30:1380–1390

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13:832–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569

    Article  CAS  PubMed  Google Scholar 

  • Collison LW, Pillai MR, Chaturvedi V, Vignali DA (2009) Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J Immunol 182:6121–6128

    Article  CAS  PubMed  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  • Dariavach P, Mattei MG, Golstein P, Lefranc MP (1988) Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol 18:1901–1905

    Article  CAS  PubMed  Google Scholar 

  • Das M, Zhu C, Kuchroo VK (2017) Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 276:97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson TS, DiPaolo RJ, Andersson J, Shevach EM (2007) Cutting edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178:4022–4026

    Article  CAS  PubMed  Google Scholar 

  • De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C, Bonnal RJP, Provasi E, Sarnicola ML, Panzeri I et al (2016) Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45:1135–1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862

    Article  CAS  PubMed  Google Scholar 

  • DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT et al (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184:1918–1930

    Article  CAS  PubMed  Google Scholar 

  • Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE, Bettini ML, Vogel P, Finkelstein D, Bonnevier J et al (2013) Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501:252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng G (2018) Tumor-infiltrating regulatory T cells: origins and features. Am J Clin Exp Immunol 7:81–87

    PubMed  PubMed Central  Google Scholar 

  • Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi T, Muro K, Ishii H, Kato T, Tsushima T, Takenoyama M, Oizumi S, Gemmoto K, Suna H, Enokitani K et al (2019) A phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin Cancer Res 25:6614–6622

    Article  CAS  PubMed  Google Scholar 

  • Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL, Obermajer N (2017) Suppressive IL-17A. Nat Commun 8:14649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230

    Article  CAS  PubMed  Google Scholar 

  • Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5:e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  CAS  PubMed  Google Scholar 

  • Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini F et al (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19:739–746

    Article  CAS  PubMed  Google Scholar 

  • Gandhi MK, Lambley E, Duraiswamy J, Dua U, Smith C, Elliott S, Gill D, Marlton P, Seymour J, Khanna R (2006) Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 108:2280–2289

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, Sun J, Yang Q, Zhang X, Lu B (2012) TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One 7:e30676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge X, Zhao Y, Chen C, Wang J, Sun L (2019) Cancer immunotherapies targeting tumor-associated regulatory T cells. Onco Targets Ther 12:11033–11044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gianchecchi E, Fierabracci A (2018) Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression. Front Immunol 9:2374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, Biota C, Doffin AC, Durand I, Olive D et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009

    Article  CAS  PubMed  Google Scholar 

  • Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing JB, Lim EL, Teng KWW, Adeegbe D, Newell EW et al (2019) Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A 116:609–618

    Article  CAS  PubMed  Google Scholar 

  • Haas M, Dimmler A, Hohenberger W, Grabenbauer GG, Niedobitek G, Distel LV (2009) Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterol 9:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F et al (2016) Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer cell 29:587–601

    Article  CAS  PubMed  Google Scholar 

  • Halvorsen EC, Hamilton MJ, Young A, Wadsworth BJ, LePard NE, Lee HN, Firmino N, Collier JL, Bennewith KL (2016) Maraviroc decreases CCL8-mediated migration of CCR5(+) regulatory T cells and reduces metastatic tumor growth in the lungs. Oncoimmunology 5:e1150398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, Triebel F, Charron D, Aoudjit F, Al-Daccak R, Michel L (2011) MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol 186:5173–5183

    Article  CAS  PubMed  Google Scholar 

  • Hibino S, Chikuma S, Kondo T, Ito M, Nakatsukasa H, Omata-Mise S, Yoshimura A (2018) Inhibition of Nr4a receptors enhances antitumor immunity by breaking Treg-mediated immune tolerance. Cancer Res 78:3027–3040

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    Article  CAS  PubMed  Google Scholar 

  • Honda T, Hishizawa M, Kataoka TR, Ohmori K, Takaori-Kondo A, Miyachi Y, Kabashima K (2015) Stevens-Johnson syndrome associated with mogamulizumab-induced deficiency of regulatory T cells in an adult T-cell leukaemia patient. Acta Derm Venereol 95:606–607

    Article  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY (2006) An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7:401–410

    Article  CAS  PubMed  Google Scholar 

  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21:503–513

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T et al (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390

    Article  CAS  PubMed  Google Scholar 

  • Huard B, Tournier M, Hercend T, Triebel F, Faure F (1994) Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol 24:3216–3221

    Article  CAS  PubMed  Google Scholar 

  • Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9:83–89

    Article  CAS  PubMed  Google Scholar 

  • Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408

    PubMed  Google Scholar 

  • Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, Saburi Y, Miyamoto T, Takemoto S, Suzushima H et al (2012) Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 30:837–842

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Ito A, Sato F, Kusumoto S, Iida S, Inagaki H, Morita A, Akinaga S, Ueda R (2013) Stevens-Johnson syndrome associated with mogamulizumab treatment of adult T-cell leukemia/lymphoma. Cancer Sci 104:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y, Hamanishi J, Chamoto K, Honjo T (2017) Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 24:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayaraman P, Sada-Ovalle I, Beladi S, Anderson AC, Dardalhon V, Hotta C, Kuchroo VK, Behar SM (2010) Tim3 binding to galectin-9 stimulates antimicrobial immunity. J Exp Med 207:2343–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Du Z, Yang F, Di Y, Li J, Zhou Z, Pillarisetty VG, Fu D (2014) FOXP3+ lymphocyte density in pancreatic cancer correlates with lymph node metastasis. PLoS One 9:e106741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao X, Velasco-Velazquez MA, Wang M, Li Z, Rui H, Peck AR, Korkola JE, Chen X, Xu S, DuHadaway JB et al (2018) CCR5 governs DNA damage repair and breast cancer stem cell expansion. Cancer Res 78:1657–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao X, Nawab O, Patel T, Kossenkov AV, Halama N, Jaeger D, Pestell RG (2019) Recent advances targeting CCR5 for cancer and its role in immuno-oncology. Cancer Res 79:4801–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jie HB, Gildener-Leapman N, Li J, Srivastava RM, Gibson SP, Whiteside TL, Ferris RL (2013) Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer 109:2629–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186:1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V et al (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH (2001) Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193:1285–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakita N, Kanto T, Itose I, Kuroda S, Inoue M, Matsubara T, Higashitani K, Miyazaki M, Sakakibara M, Hiramatsu N et al (2012) Comparative analyses of regulatory T cell subsets in patients with hepatocellular carcinoma: a crucial role of CD25(-) FOXP3(-) T cells. Int J Cancer 131:2573–2583

    Article  CAS  PubMed  Google Scholar 

  • Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A et al (2019a) PD-1. Proc Natl Acad Sci U S A 116:9999–10008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A et al (2019b) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 116:9999–10008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasamon YL, Chen H, de Claro RA, Nie L, Ye J, Blumenthal GM, Farrell AT, Pazdur R (2019) FDA approval summary: Mogamulizumab-kpkc for mycosis fungoides and Sezary syndrome. Clin Cancer Res 25:7275–7280

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, Liu X, Thummuri D, Yuan Y, Wiegand JS et al (2019) A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med 25:1938–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  CAS  PubMed  Google Scholar 

  • Kingsley CI, Karim M, Bushell AR, Wood KJ (2002) CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 168:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Bopp T (2016) Cyclic AMP represents a crucial component of Treg cell-mediated immune regulation. Front Immunol 7:315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kluz PN, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, Kim MC, Wang L, Zhang Y, Li W et al (2020) Cancer cell-intrinsic function of CD177 in attenuating beta-catenin signaling. Oncogene 39:2877–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  CAS  PubMed  Google Scholar 

  • Kuehnemuth B, Piseddu I, Wiedemann GM, Lauseker M, Kuhn C, Hofmann S, Schmoeckel E, Endres S, Mayr D, Jeschke U, Anz D (2018) CCL1 is a major regulatory T cell attracting factor in human breast cancer. BMC Cancer 18:1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurose K, Ohue Y, Wada H, Iida S, Ishida T, Kojima T, Doi T, Suzuki S, Isobe M, Funakoshi T et al (2015) Phase Ia study of FoxP3+ CD4 Treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. Clin Cancer Res 21:4327–4336

    Article  CAS  PubMed  Google Scholar 

  • Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 125:4053–4062

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60:909–918

    Article  CAS  PubMed  Google Scholar 

  • Lan Q, Zhou X, Fan H, Chen M, Wang J, Ryffel B, Brand D, Ramalingam R, Kiela PR, Horwitz DA et al (2012) Polyclonal CD4+Foxp3+ Treg cells induce TGFbeta-dependent tolerogenic dendritic cells that suppress the murine lupus-like syndrome. J Mol Cell Biol 4:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  CAS  PubMed  Google Scholar 

  • Lee HM, Bautista JL, Hsieh CS (2011) Thymic and peripheral differentiation of regulatory T cells. Adv Immunol 112:25–71

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, Kao KC, Chiu YL, Jung CJ, Liu CJ, Cheng SJ, Chang YL, Ko JY, Chia JS (2017) Enrichment of human CCR6(+) regulatory T cells with superior suppressive activity in oral cancer. J Immunol 199:467–476

    Article  CAS  PubMed  Google Scholar 

  • Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58:449–459

    Article  PubMed  Google Scholar 

  • Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D et al (2011) Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 41:902–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–591

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, Flores M, Li N, Schweighoffer E, Greenberg S et al (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180:5916–5926

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Wu H, Wang C, Xiao Z, Xu F (2018) Regulatory T cells and acute lung injury: cytokines, uncontrolled inflammation, and therapeutic implications. Front Immunol 9:1545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling KL, Pratap SE, Bates GJ, Singh B, Mortensen NJ, George BD, Warren BF, Piris J, Roncador G, Fox SB et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7

    PubMed  PubMed Central  Google Scholar 

  • Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569

    Article  CAS  PubMed  Google Scholar 

  • Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Putnam AL, Xu-yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St. Groth BF et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) T reg cells. J Exp Med 203:1701–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, Wang H, Chen J, Wang H (2011) Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS One 6:e19495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, McMichael EL, Shayan G, Li J, Chen K, Srivastava R, Kane LP, Lu B, Ferris RL (2018) Novel effector phenotype of Tim-3(+) regulatory T cells leads to enhanced suppressive function in head and neck cancer patients. Clin Cancer Res 24:4529–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowther DE, Goods BA, Lucca LE, Lerner BA, Raddassi K, van Dijk D, Hernandez AL, Duan X, Gunel M, Coric V et al (2016) PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 1:e85935

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Liu J, Wu G, Teng M, Wang S, Cui M, Li Y (2018) Co-expression of LAG3 and TIM3 identifies a potent Treg population that suppresses macrophage functions in colorectal cancer patients. Clin Exp Pharmacol Physiol 45:1002–1009

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Murakami K, Inoue A, Yonezawa T, Matsuki N (2019) CCR4 blockade depletes regulatory T cells and prolongs survival in a canine model of bladder cancer. Cancer Immunol Res 7:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Maemoto H, Ariga T, Kusada T, Heianna J, Manabe Y, Miyakawa A, Nakachi S, Morishima S, Iraha S, Ganaha F et al (2019) Radiation-induced dermatitis after administration of mogamulizumab for adult T-cell leukaemia/lymphoma: a multi-institutional retrospective study. Jpn J Clin Oncol 49:153–159

    Article  PubMed  Google Scholar 

  • Magnuson AM, Kiner E, Ergun A, Park JS, Asinovski N, Ortiz-Lopez A, Kilcoyne A, Paoluzzi-Tomada E, Weissleder R, Mathis D, Benoist C (2018) Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proc Natl Acad Sci U S A 115:E10672–E10681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P et al (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 107:7875–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCully ML, Ladell K, Andrews R, Jones RE, Miners KL, Roger L, Baird DM, Cameron MJ, Jessop ZM, Whitaker IS et al (2018) CCR8 expression defines tissue-resident memory T cells in human skin. J Immunol 200:1639–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A et al (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148

    Article  CAS  PubMed  Google Scholar 

  • Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177:7398–7405

    Article  CAS  PubMed  Google Scholar 

  • Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA (2008) Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 111:5359–5370

    Article  CAS  PubMed  Google Scholar 

  • Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122:2286–2293

    Article  CAS  PubMed  Google Scholar 

  • Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:536–541

    Article  CAS  PubMed  Google Scholar 

  • Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, Elferink BG, van der Zanden L, de Vries RR, Huizinga TW et al (2005) Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum Immunol 66:13–20

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143

    Article  CAS  PubMed  Google Scholar 

  • Ni X, Jorgensen JL, Goswami M, Challagundla P, Decker WK, Kim YH, Duvic MA (2015) Reduction of regulatory T cells by Mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sezary syndrome. Clin Cancer Res 21:274–285

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa G, Kawada K, Nakagawa J, Toda K, Ogawa R, Inamoto S, Mizuno R, Itatani Y, Sakai Y (2019) Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5. Cell Death Dis 10:264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogura M, Ishida T, Hatake K, Taniwaki M, Ando K, Tobinai K, Fujimoto K, Yamamoto K, Miyamoto T, Uike N et al (2014) Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol 32:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Ohshima K, Karube K, Kawano R, Tsuchiya T, Suefuji H, Yamaguchi T, Suzumiya J, Kikuchii M (2004) Classification of distinct subtypes of peripheral T-cell lymphoma unspecified, identified by chemokine and chemokine receptor expression: Analysis of prognosis. Int J Oncol 25:605–613

    CAS  PubMed  Google Scholar 

  • Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105:10113–10118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133

    CAS  PubMed  Google Scholar 

  • Ouyang W, O’Garra A (2019) IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 50:871–891

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E et al (2020) A cell atlas of human thymic development defines T cell repertoire formation. Science 367:eaay3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Carcamo CV, Sobel RA, Rudensky AY, Kuchroo VK et al (2015) Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med 212:1603–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson SJ, Pesenacker AM, Wang AY, Gillies J, Mojibian M, Morishita K, Tan R, Kieffer TJ, Verchere CB, Panagiotopoulos C, Levings MK (2016) T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. J Clin Invest 126:1039–1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccirillo CA, Shevach EM (2001) Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 167:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, Chudakov DM, Rudensky AY (2016) Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45:1122–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183:2669–2674

    Article  CAS  PubMed  Google Scholar 

  • Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondi G, Shufesky WJ, Tokita D, Morelli AE, Thomson AW (2006) Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells. J Immunol 176:2808–2816

    Article  CAS  PubMed  Google Scholar 

  • Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H, Cramer D, Lear SC, McMasters KM, Miller DM, Chesney J (2008) Transient T cell depletion causes regression of melanoma metastases. J Transl Med 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rauch DA, Conlon KC, Janakiram M, Brammer JE, Harding JC, Ye BH, Zang X, Ren X, Olson S, Cheng X et al (2019) Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood 134:1406–1414

    Article  PubMed  PubMed Central  Google Scholar 

  • Rech AJ, Mick R, Martin S, Recio A, Aqui NA, Powell DJ, Colligon TA, Trosko JA, Leinbach LI, Pletcher CH et al (2012) CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 4:134ra162

    Article  CAS  Google Scholar 

  • Remer M, Al-Shamkhani A, Glennie M, Johnson P (2014) Mogamulizumab and the treatment of CCR4-positive T-cell lymphomas. Immunotherapy 6:1187–1206

    Article  CAS  PubMed  Google Scholar 

  • Romano M, Tung SL, Smyth LA, Lombardi G (2017) Treg therapy in transplantation: a general overview. Transpl Int 30:745–753

    Article  CAS  PubMed  Google Scholar 

  • Roncador G, Brown PJ, Maestre L, Hue S, MartĂ­nez-Torrecuadrada JL, Ling KL, Pratap S, Toms C, Fox BC, Cerundolo V et al (2005) Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 35:1681–1691

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E et al (2016) Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22:679–684

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S (2011) Regulatory T cells: history and perspective. Methods Mol Biol 707:3–17

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  • Sakuishi K, Ngiow SF, Sullivan JM, Teng MW, Kuchroo VK, Smyth MJ, Anderson AC (2013a) TIM3. Oncoimmunology 2:e23849

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakuishi K, Ngiow SF, Sullivan JM, Teng MW, Kuchroo VK, Smyth MJ, Anderson AC (2013b) TIM3(+)FOXP3(+) regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology 2:e23849

    Article  PubMed  PubMed Central  Google Scholar 

  • Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    Article  PubMed  Google Scholar 

  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  CAS  PubMed  Google Scholar 

  • Sanmamed MF, Chen L (2018) A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol Cell Biol 96:21–33

    Article  CAS  PubMed  Google Scholar 

  • Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, Sampson JH, Mitchell DA (2015) Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother 64:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL (2005) Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer 92:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, Cerwenka A (2012) Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 189:5602–5611

    Article  CAS  PubMed  Google Scholar 

  • Schuler PJ, Saze Z, Hong CS, Muller L, Gillespie DG, Cheng D, Harasymczuk M, Mandapathil M, Lang S, Jackson EK, Whiteside TL (2014) Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol 177:531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scurr M, Ladell K, Besneux M, Christian A, Hockey T, Smart K, Bridgeman H, Hargest R, Phillips S, Davies M et al (2014) Highly prevalent colorectal cancer-infiltrating LAP+ Foxp3- T cells exhibit more potent immunosuppressive activity than Foxp3+ regulatory T cells. Mucosal Immunol 7:428–439

    Article  CAS  PubMed  Google Scholar 

  • Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, Korman AJ (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1:32–42

    Article  CAS  PubMed  Google Scholar 

  • Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro M, Herishanu Y, Katz BZ, Dezorella N, Sun C, Kay S, Polliack A, Avivi I, Wiestner A, Perry C (2017) Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica 102:874–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Subudhi SK, Blando J, Scutti J, Vence L, Wargo J, Allison JP, Ribas A, Sharma P (2019) Anti-CTLA-4 immunotherapy does not deplete FOXP3(+) regulatory T cells (Tregs) in human cancers. Clin Cancer Res 25:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Shimauchi T, Hirokawa Y, Tokura Y (2005) Purpuric adult T-cell leukaemia/lymphoma: expansion of unusual CD4/CD8 double-negative malignant T cells expressing CCR4 but bearing the cytotoxic molecule granzyme B. Br J Dermatol 152:350–352

    Article  CAS  PubMed  Google Scholar 

  • Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    CAS  PubMed  Google Scholar 

  • Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210:1695–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr, Singh R (2018) CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep 8:1323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sokol CL, Camire RB, Jones MC, Luster AD (2018) The chemokine receptor CCR8 promotes the migration of dendritic cells into the lymph node parenchyma to initiate the allergic immune response. Immunity 49:449–463.e446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockis J, Roychoudhuri R, Halim TYF (2019) Regulation of regulatory T cells in cancer. Immunology 157:219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su W, Chen X, Zhu W, Yu J, Li W, Li Y, Li Z, Olsen N, Liang D, Zheng SG (2019) The cAMP-adenosine feedback loop maintains the suppressive function of regulatory T cells. J Immunol 203:1436–1446

    Article  CAS  PubMed  Google Scholar 

  • Sugiura H, Matsuoka KI, Sando Y, Meguri Y, Ikegawa S, Nakamura M, Iwamoto M, Yoshioka T, Asano T, Kondo E et al (2019) Plasma exchange eliminates residual mogamulizumab but does not warrant prompt recovery of peripheral Treg levels. Transfus Apher Sci 58:472–474

    Article  PubMed  Google Scholar 

  • Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I, Ezoe S, Kanakura Y, Sato E, Fukumori Y et al (2013) Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A 110:17945–17950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundström P, Stenstad H, Langenes V, Ahlmanner F, Theander L, Ndah TG, Fredin K, Börjesson L, Gustavsson B, Bastid J, Quiding-Järbrink M (2016) Regulatory T cells from colon cancer patients inhibit effector T-cell migration through an adenosine-dependent mechanism. Cancer Immunol Res 4:183–193

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10:1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Tan MC, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS, Linehan DC (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182:1746–1755

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470:548–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Sakaguchi S (2019) Targeting Treg cells in cancer immunotherapy. Eur J Immunol 49:1140–1146

    CAS  PubMed  Google Scholar 

  • Tang Y, Xu X, Guo S, Zhang C, Tian Y, Ni B, Lu B, Wang H (2014) An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS One 9:e91551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang S, Xiang T, Huang S, Zhou J, Wang Z, Xie R, Long H, Zhu B (2016) Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling. Cancer Lett 376:137–147

    Article  CAS  PubMed  Google Scholar 

  • Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, Okabe K, Matsumoto T, Sugi K, Ueoka H (2012) Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 75:95–101

    Article  PubMed  Google Scholar 

  • Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiffany HL, Lautens LL, Gao JL, Pease J, Locati M, Combadiere C, Modi W, Bonner TI, Murphy PM (1997) Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine I-309. J Exp Med 186:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  CAS  PubMed  Google Scholar 

  • Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valzasina B, Piconese S, Guiducci C, Colombo MP (2006) Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res 66:4488–4495

    Article  CAS  PubMed  Google Scholar 

  • Villarreal DO, L’Huillier A, Armington S, Mottershead C, Filippova EV, Coder BD, Petit RG, Princiotta MF (2018) Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res 78:5340–5348

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma A, Bocherding N, Chimenti MS, Vishwakarma P, Nepple K, Salem A, Jenkins RW, Zhang W, Zakharia Y (2019) Mapping the immune landscape of clear cell renal cell carcinoma by single-cell RNA-seq. Cold Spring Harbor Laboratory

    Google Scholar 

  • Wan Z, Zhou Z, Liu Y, Lai Y, Luo Y, Peng X, Zou W (2020) Regulatory T cells and T helper 17 cells in viral infection. Scand J Immunol 91:e12873

    Article  PubMed  Google Scholar 

  • Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C, Hao J, Dong J, Luo L, Li X et al (2017) Cancer-FOXP3 directly activated CCL5 to recruit FOXP3. Oncogene 36:3048–3058

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, Chen L, Chen Y, Zhu G, Yin W et al (2019) Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176:334–347.e312

    Article  CAS  PubMed  Google Scholar 

  • Ward ST, Li KK, Hepburn E, Weston CJ, Curbishley SM, Reynolds GM, Hejmadi RK, Bicknell R, Eksteen B, Ismail T et al (2015) The effects of CCR5 inhibition on regulatory T-cell recruitment to colorectal cancer. Br J Cancer 112:319–328

    Article  CAS  PubMed  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L et al (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    Article  CAS  PubMed  Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  • Winsett FT, Lewis DJ, Duvic M (2017) Mogamulizumab for the treatment of relapsed or refractory adult T-cell leukemia-lymphoma. Exp Rev Hematol 10:757–760

    Article  CAS  Google Scholar 

  • Wolf Y, Anderson AC, Kuchroo VK (2020) TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 20:173–185

    Article  CAS  PubMed  Google Scholar 

  • Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C (2007) Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 178:7032–7041

    Article  CAS  PubMed  Google Scholar 

  • Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72:917–927

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C, Kato S, Tomida S, Suzuki M, Osada H, Takahashi T (2012) NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell 21:348–361

    Article  CAS  PubMed  Google Scholar 

  • Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107:3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Chen M, Yang X, Zhang X, Zhang Z, Sun Y, Xu B, Hua J, He Z, Song Z (2017) Down-regulation of KLF5 in cancer-associated fibroblasts inhibit gastric cancer cells progression by CCL5/CCR5 axis. Cancer Biol Ther 18:806–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Liu Y, Mo B, Xue Y, Ye C, Jiang Y, Bi X, Liu M, Wu Y, Wang J et al (2019) Helios but not CD226, TIGIT and Foxp3 is a potential marker for CD4(+) Treg cells in patients with rheumatoid arthritis. Cell Physiol Biochem 52:1178–1192

    Article  PubMed  CAS  Google Scholar 

  • Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ (2013) The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J Hepatol 58:977–983

    Article  CAS  PubMed  Google Scholar 

  • Yoshie O, Matsushima K (2015) CCR4 and its ligands: from bench to bedside. Int Immunol 27:11–20

    Article  CAS  PubMed  Google Scholar 

  • Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, Hieshima K, Tatsumi Y, Matsushima K, Hasegawa H et al (2002) Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood 99:1505–1511

    Article  CAS  PubMed  Google Scholar 

  • Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA et al (2019) Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med 25:1251–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Y, Li Y, Li M, Lei M, Wu M, Qu Y, Yuan Y, Chen T, Jiang H (2018) Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin Exp Immunol 191:60–73

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10:48–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang CY, Qi Y, Li XN, Yang Y, Liu DL, Zhao J, Zhu DY, Wu K, Zhou XD, Zhao S (2015) The role of CCL20/CCR6 axis in recruiting Treg cells to tumor sites of NSCLC patients. Biomed Pharmacother 69:242–248

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, Vignali KM, Normolle D, Bettini M, Workman CJ, Vignali DAA (2017) LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci Immunol 2:eaah4569

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Xu J, Fang H, Tang L, Chen W, Sun Q, Zhang Q, Yang F, Sun Z, Cao L et al (2018) Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. FASEB J 32:276–288

    Article  CAS  PubMed  Google Scholar 

  • Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA (2002) Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol 169:4183–4189

    Article  CAS  PubMed  Google Scholar 

  • Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213–5221

    Article  CAS  PubMed  Google Scholar 

  • Zheng SG, Wang JH, Stohl W, Kim KS, Gray JD, Horwitz DA (2006) TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol 176:3321–3329

    Article  CAS  PubMed  Google Scholar 

  • Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018–2027

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q et al (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169:1342–1356.e1316

    Article  CAS  PubMed  Google Scholar 

  • Zingoni A, Soto H, Hedrick JA, Stoppacciaro A, Storlazzi CT, Sinigaglia F, D’Ambrosio D, O’Garra A, Robinson D, Rocchi M et al (1998) The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. J Immunol 161:547–551

    CAS  PubMed  Google Scholar 

  • Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhou Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolb, H.R., Borcherding, N., Zhang, W. (2021). Understanding and Targeting Human Cancer Regulatory T Cells to Improve Therapy. In: Zheng, SG. (eds) T Regulatory Cells in Human Health and Diseases. Advances in Experimental Medicine and Biology, vol 1278. Springer, Singapore. https://doi.org/10.1007/978-981-15-6407-9_12

Download citation

Publish with us

Policies and ethics