Skip to main content

Phytoremediation of Toxic Metals/Metalloids and Pollutants by Brassicaceae Plants

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

Contamination through heavy metals/metalloids as well as other pollutants is a major concern to the environment. There is a gradual increase in the concentration of these toxic metal/metalloids and pollutants in the soil because of human as well as natural actions. To remove these contaminants from soil, phytoremediation is a very efficient, cheap and environmental friendly approach. Recently, for phytoremediation of these metals/metalloids contaminated soil, a novel method of phytoextraction and phytomining with hyperaccumulator plants is gaining popularity. Of these hyperaccumulator plant species, Brassicaceae has shown potential for removing these pollutants completely and permanently. Members of this family like T. caerulescens, A. murale, A. halleri, B. napus, B. nigra, R. sativus are very efficient phytoremediators. Indian mustard (B. juncea), belonging to this family is known to have a very high capacity for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah M, Chai PS, Loh CY, Chong MY, Quay HW, Vidyadaran S, Seman Z, Kandiah M, Seow HF (2011) Carica papaya increases regulatory T cells and reduces IFN-gamma(+)CD4(+) T cells in healthy human subjects. Mol Nutr Food Res 55:803–806

    CAS  PubMed  Google Scholar 

  • Adams A, Raman A, Hodgkins D (2013) How do the plants used in phytoremediation in constructed wetlands, a sustainable remediation strategy, perform in heavy-metalcontaminated mine sites? Water Environ J 27(3):373–386

    CAS  Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Tayefeh FH (2012) Afri J Biotechnol 11(76):14036–14043. http://www.academicjournals.org/AJB, https://doi.org/10.5897/ajb12.459. ISSN 1684-5315 © 2012 Academic Journals

  • Amazu LU, Ebong OO, Azikiwe CCA, Unekwe PC, Siminialayi MI, Nowsu PJC, Ezeani MC, Obidiya OS, Ajugwo AO (2009) Effects of the methanolic seeds extract of Carica Papaya on plasmodium Berghei infected mice. Asian Pac J Trop Med 2:1–6

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—Concepts and applications. Chemosphere 91:869–881

    CAS  PubMed  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    CAS  Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Google Scholar 

  • Anderson TA, Coats JR (1994) Bioremediation through rhizosphere technology. ACS symposium series, vol 563. American Chemical Society, Washington, DC, 249 pp

    Google Scholar 

  • Andrahennadi R, Gillott C (1998) Resistance of Brassica, especially B. juncea (L.) Czern, genotypes to the diamondback moth, Plutella xylostella (L.). Crop Prot 17:85–94

    Google Scholar 

  • Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (2012) The plant family Brassicaceae: an introduction. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (eds) The plant family Brassicaceae: contribution towards phytoremediation, environmental pollution series no. 21. Springer, Dordrecht

    Google Scholar 

  • Ariyakanon N, Winaipanich B (2006) Phytoremediation of copper contaminated soil by Brassica juncea (L.) Czern and Bidens alba (L.) DC. var. radiata. J Sci Res Chula Univ 31(1):49–56

    Google Scholar 

  • Axelsson T, Bowman CM, Sharoe AG, Lydiate DJ, Lagercrantz U (2000) Genome 43:679–688

    CAS  PubMed  Google Scholar 

  • Babula P, Adam V, Havel L, Kizek R (2012) Cadmium accumulation by plants of Brassicaceae family and its connection with their primary and secondary metabolism. In: Anjum NA et al (eds) The plant family Brassicaceae: contribution towards phytoremediation, environmental pollution, vol 21. https://doi.org/10.1007/978-94-007-3913-0_3, # Springer Science + Business Media Dordrecht 2012

  • Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    CAS  PubMed  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994a) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994b) Heavy metal hyperaccumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves DR, Smith JAC (2000) Metal hyperaccumulators plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL

    Google Scholar 

  • Baker AJM, Proctor J (1990) The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Syst Evol 173:91–108

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants. Evolutionary aspects. CRC Press, Boca Raton FL, USA, pp 155–177

    Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail—a further step in understanding metal hyperaccumulation? New Phytol 155:1–7

    Google Scholar 

  • Banga SS (1997) Genetics and breeding in Brassica oilseed crops. In: Thomas G, Monteiro AA (eds) Proceedings of the inter national symposium on Brassicas. Acta Hortic. No. 459. ISHS, Rennes, France, pp 389–395

    Google Scholar 

  • Banuelos GS (2001) The green technology of selenium phytoremedian. Biofactor 14:255–260

    CAS  Google Scholar 

  • Barceló J, Poschenrieder C (1999) Structural and ultrastructural changes in heavy metal exposed plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. From molecules to ecosystems. Springer, Berlin, pp 183–205

    Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives contributions to science 2(3):333–344

    Google Scholar 

  • Barceló J, Poschenrieder C, Tolrà RP (2003) Importance of phenolics in rhizosphere and roots for plantmetal relationships. In: Gobran G (ed) Extended abstracts 7th ICOBTE Upsala 15–19 June, pp 162–163

    Google Scholar 

  • Barman SC, Sahu RK, Bhargava SK, Chaterjee C (2000) Distribution of heavy metals in wheat, mustard and weed grown in fields irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–496

    CAS  PubMed  Google Scholar 

  • Basic N, Keller C, Fontanillas P, Besnard G, Galland N (2006) Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biol 8:64–72

    CAS  PubMed  Google Scholar 

  • Becher M, Talke IN, Krall L, Kreamer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    CAS  PubMed  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15:1632–1642

    CAS  PubMed  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Env Manag 105:103–120

    CAS  Google Scholar 

  • Bhaskar VV, Vora AV (1994) Growth and yield analysis of Brassica juncea L. under three photoperiods. J Environ Biol 15:55–61

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phy‐ to remediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Google Scholar 

  • Boyd RS (1998) Hyperaccumulation as a plant defensive strategy. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, UK, pp 181–201

    Google Scholar 

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7

    CAS  Google Scholar 

  • Boyd RS, Wall MA, Santos SR, Davis MA (2009) Variation of morphology and elemental concentrations in the California nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). Northeast Nat 16:21–38

    Google Scholar 

  • Breithaupt DE, Weller P, Wolters M, Hahn A (2003) Plasma response to a single dose of dietary beta-cryptoxanthin esters from papaya (Carica papaya L.) or non-esterified beta-cryptoxanthin in adult human subjects: a comparative study. Braz J Nutr 90:795–801

    CAS  Google Scholar 

  • Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF et al (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Google Scholar 

  • Brooks RR (1998) Phytoremediation by volatilisation. In: Brooks RR (ed) Plants that hy peraccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 289–312

    Google Scholar 

  • Brooks RR, Chiarucci A, Jaffré T (1998) Revegetation and stabilization of mine dumps and other degraded terrain. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 227–247

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    CAS  Google Scholar 

  • Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc R Soc Lond B 200:217–224

    CAS  Google Scholar 

  • Chaffai R, Koyama H (2011) Heavy metal tolerance in Arabidopsis thaliana. Adv Bot Res 60:149

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constitutes. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, USA, pp 50–76

    Google Scholar 

  • Chaney RL, Malik M, LI YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Google Scholar 

  • Chen CL, Zhou GF, Fan YH, Zhou Y, Chen XQ (1995) Discussion on the origin of mustard (Brassica juncea) in China. Acta Hortic 402:317–320

    Google Scholar 

  • Chiang HC, Lo J-C, Yeh K-C (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    CAS  PubMed  Google Scholar 

  • Chiou HY, Hueh YM, Liaw KF, Horng SF, Chiang MH, Pu YS, Lin JSN, Huang H Chen CJ (1995) Incidence of internal cancers and ingested organic arsenic: as even years follow up study in Taiwan. Cancer Res 55:1296–1300

    Google Scholar 

  • Cho M, Chardonnens AN, Dietz K-J (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293

    CAS  Google Scholar 

  • Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead contaminated soils. Biotechnology 5:1–4

    CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal homeostasis and tolerance. Planta 212:475–486

    Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf and cellular level. Plant Physiol 134:716–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo MB, Lledo MD, Fay MF, Chase MW (2000) Subtribe Vellinae (Brassiceae, brassicaceae): a combined analysis of ITS nrDNA sequences and morphological data. Ann Bot 86:53–62

    CAS  Google Scholar 

  • Crowley DE, Alvey S, Gilbert ES (1997) Rhizosphere ecology of xenobiotic-degrading microorganisms. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS Symposium Series, Washington, pp 20–36

    Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56(1):55–114

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Remediation of contaminated soils and sludges by green plants. In: Hinchee RE, Means JL, Burris DR (eds) Bioremediation of Inorganics. Battelle Press, Columbus, OH, USA, pp 33–54

    Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants, ACS symposium series 664. American Chemical Society, Washington, DC

    Google Scholar 

  • Dan TV, Krishna Raj S, Saxena PK (2000) Metal tolerance of Scented geranium (Pelargonium sp. Frensham): effects of cadmium and nickel on chlorophyll fluorescence kinetics. Int J Phytorem 2:91–104

    CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytorem 11:664–691

    CAS  Google Scholar 

  • Dar MI, Khan FA, Rehman F, Masoodi A, Ansari AA, Varshney D, Naushin F. Naikoo MI (2015) Roles of Brassicaceae in phytoremediation of metals and metalloids. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants, vol 1. https://doi.org/10.1007/978-3-319-10395-2_14, © Springer International Publishing, Switzerland

  • Delorme TA, Gagliardi JV, Angle JS, Chaney RL (2001) Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the non-metal accumulator Trifolium pratense L. on soil microbial populations. Can J Microbiol 47:773–776

    CAS  PubMed  Google Scholar 

  • Dhote S, Dixit S (2009) Water quality improvement through macrophytes—a review. Envi Monitor Assess 152:149–153

    CAS  Google Scholar 

  • Domínguez MT, Madrid F, Marañón T, Murillo JM (2009) Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere 76:480–486

    PubMed  Google Scholar 

  • Doran PM, Nedelkoska TV (1999) Uptake of heavy metals by hairy roots of hyperaccumulating plant species. Abstr Pap Am Chem Soc 217:U168

    Google Scholar 

  • Dushenkov S, Kapulnik Y (2000) Phytofiltration of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 89–106

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofilteration: the use of plants to remove heavy metal from aqueous streams. Environ Sci Technol 29:1239–1245

    CAS  PubMed  Google Scholar 

  • Ehrendorfer F, Neuffer B (2006) Herbert Hurka: research in botany, particularly in the evolutionary systematics of Brassicaceae. Plant Syst Evol 259:85–87

    Google Scholar 

  • El Mehdawi AF, Pilon-Smits EA (2012) Ecological aspects of plan selenium hyperaccumulation. Plant Biol (Stuttg) 14:1–10

    Google Scholar 

  • Endress PK (2011) Evolutionary diversification of the flowers in angiosperms. Am J Bot 98:370–396

    PubMed  Google Scholar 

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Ernst WHO, Schat H, Verkleij JAC (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evolutionary Trends in Plants 4:45–51

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Ernst WHO (1995) Decontamination or consolidation of metal contaminated soils by biological means. In: Förstner U, Salomons W, Meder P (eds) Heavy metals: problems and solutions. Springer, Berlin, pp 141–149

    Google Scholar 

  • Ernst WHO (2000 a) Evolution and ecophysiology of metallophytes in Africa and Europe. In: Breckle SW, Schweizen B, Arndt U (eds) Results of worldwide ecological studies. 1st symposium AFW Schimper foundation (H & E Walter) Stuttgart 1998, Heimbach Verlag, Stutgart, pp 23–35

    Google Scholar 

  • Ernst WHO (2000b) Evolution of metal hyperaccumulation and phytoremediation hype. New Phyto 146:357358

    Google Scholar 

  • Favas PJC, Pratas J, Prasad MNV (2012) Accumulation of arsenic by aquatic plants in largescale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397

    CAS  PubMed  Google Scholar 

  • Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. Environ Risk Asses Soil Contam 3:485–516

    Google Scholar 

  • Fonder N, Headley T (2013) The taxonomy of treatment wetlands: a proposed classification and nomenclature system. Ecol Eng 51:203–211

    Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus MA, McGrath SP, Hoewyk DV, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frers C (2009) El uso de plantas acuáticas en el tratamiento de aguas residuales. El Planeta Azul, Carmen de Areco, Argentina

    Google Scholar 

  • Gabbrielli R, Pandolfini T, Vergnano O, Palandri MR (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122:271–277

    Google Scholar 

  • Ge Y, Ramchiary N, Wang T, Liang C, Wang N, Wang Z, Choi SR, Lim YP, Piao ZY (2011) Development and linkage mapping of unigene-derived microsatellite markers in Brassica rapa L. Breed Sci 61:160–167

    Google Scholar 

  • German DA, Friesen N, Neuffer B, Al-Shehbaz IA, Hurka H (2009) Contribution to ITS phylogeny of the Brassicaceae, with special reference to some Asian taxa. Plant Syst Evol 283:33–56

    Google Scholar 

  • Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of its by-products. Appl Ecol Environ Res 3. https://doi.org/10.15666/aeer/0301_001018

  • Gleba D, Borisjuk NV, Borisjuk L, Kneer R, Poulev A et al (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci 96:5973–5977

    CAS  PubMed  Google Scholar 

  • González V (1990) A indústria extractiva e o ambiente. Boletim de Minas 27(3):311–323

    Google Scholar 

  • Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    CAS  Google Scholar 

  • Gurjar BS, Chauhan DVS (1997) Yield attributes and seed yield of Indian mustard (Brassica juncea) as influenced by varieties, fertility levels and spacing in Harsi Command area. Indian J Agron 42:142–144

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, New York, pp 261–316

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 7–73

    Google Scholar 

  • Hassan Z, Aarts MGM (2010) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63

    Google Scholar 

  • Haston E, Richardson JE, Stevens PF, Chase MW, Harris DJ (2009) The linear angiosperm phylogeny group (LAPG) III: a linear sequence of the families in APG III. Bot J Linn Soc 161:128–131

    Google Scholar 

  • Hemingway JS (1976) Evolution of crop plants. Longman New York 1:19–21

    Google Scholar 

  • Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    PubMed  Google Scholar 

  • Hinchman RR, Negri CM, Gatliff EG (1996) Phytoremediation: using green plants to clean up contaminated soil, groundwater and wastewater. In: Proceedings of the international topical meeting on nuclear and hazardous waste management, Spectrum 96, Seattle, WA

    Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clement J, Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138:195–205

    CAS  Google Scholar 

  • Horne AJ (2000) Phytoremediation by constructed wetlands. In: Terry N, Bañuelos G. (eds.) Phytoremediation of contaminated soil and water. New York: Lewis Publishers, pp 13–39

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soil: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Huang JL, Sun GL, Zhang DM (2010) Molecular evolution and phylogeny of the angiosperm ycf2 gene. J Syst Evol 48:240–248

    Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorba M, Vallejo R (2008) La restauración ecológica de canteras: un caso con aplicación de enmiendas orgánicas y riegos. Ecosistemas 17(3):119–132

    Google Scholar 

  • Kathal R, Malhotra P, Kumar L, Uniyal PL (2016) Phytoextraction of Pb and Ni from the polluted soil by Brassica juncea L. J Environ Anal Toxicol 6:394. https://doi.org/10.4172/2161-0525.1000394

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Kimbrough DE, CohenY Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Env Sci Technol 29:1–46

    CAS  Google Scholar 

  • Koch MA, Mummenhoff K (2006) Evolution and phylogeny of the Brassicaceae. Plant Syst Evol 259:81–83

    Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    PubMed  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • KrishnaRaj S, Dan T, Saxena P (2000) A fragrant solution to soil remediation. Int J Phytorem 2:117–132

    Google Scholar 

  • Krzymaski J (1997). Agronomy of oilseed Brassicas. In: Thomas G, Monteiro AA (eds) Proceedings of the international symposium on Brassicas. Acta Horticultureae No 459 ISHS Rennes France, pp 55–60

    Google Scholar 

  • Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremediation 5:197–201

    CAS  PubMed  Google Scholar 

  • Kulakow PA, Schwab AP, Banks AP (2000) Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. Int J Phytorem 2:297–317

    CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    CAS  PubMed  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Google Scholar 

  • Larison JR, Likens GE, Fitzpatrick JW, Crock JG (2000) Cadmium toxicity among wildlife in the Colorado Rocky mountains. Nature 406:181–183

    CAS  PubMed  Google Scholar 

  • Lasat MM, Fuhrman M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoextraction of radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27:165–169

    CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    CAS  PubMed  Google Scholar 

  • Lim JM, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9

    CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    CAS  Google Scholar 

  • López Pamo E, Aduvire O, Barettino D (2002) Tratamientos pasivos de drenajes ácidos de mina: estado actual y perspectivas de futuro. Boletín Geológico y Minero 113(1):3–21

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409579

    Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    CAS  PubMed  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: cost and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    CAS  Google Scholar 

  • Mahajan P, Singla S, Kaushal J (2016) Phytoremediation of heavy metals using Brassica juneca—a Review. J Chem Environ Sci Appl 2(2):157–173

    Google Scholar 

  • Mhalappa, NJ, Mohan VK, Puranik, PR (2013) Phytoremediation of metal contaminated soils with special reference to Brassica juncea (l.) czern., Macrotyloma uniflorum lam verdc. (Dolichos biflorus) and Medicago sativa. Trends Bio Res 2(2):1–19

    Google Scholar 

  • Marhold K, Lihova J, Perny M, Bleeker W (2004) Comparative ITS and AFLP analysis of diploid Cardamine (Brassicaceae) taxa from closely related polyploid complexes. Ann Bot 93:507–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marques L, Cossegal M, Bodin S, Czernic P, Lebrun M (2004) Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol 164:289–295

    CAS  Google Scholar 

  • Martens SN, Boyd RS (2002) The defensive role of Ni hyperaccumulation by plants: a field experiment. Am J Bot 89:998–1003

    PubMed  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 261–287

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    CAS  PubMed  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • Mellem JJ, Baijnath H, Odhav B (2009) Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J Environ Sci Health Part A 44(6):568–575

    Google Scholar 

  • Mellem JJ, Baijnath H, Odhav B (2012) Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr J Agric Res 7:591–596

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    CAS  Google Scholar 

  • Meyer CL, Verbruggen N (2012) Use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. N Biotechnol 30:9–14

    Google Scholar 

  • Mhalappa NJ, Kulkarni M, Puranik P (2013) Trends Bio Res 2:1–19

    Google Scholar 

  • Miguel PM, Inês N, Pinto FR, Joana RS, Martins LL (2015) Int J Mol Sci 16:17975–17998. https://doi.org/10.3390/ijms160817975

    Article  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense, and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017) Polyamine-induced aluminium tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26(1):58–73

    CAS  PubMed  Google Scholar 

  • Nayak BS, Pereira LP, Maharaj D (2007) Wound healing activity of Carica papaya L. in experimentally induced diabetic rats. Ind J Exp Biol 45:739–743

    Google Scholar 

  • Neelam K, Bhargava SC, Bhardwaj SN, Kumari N (1994) Physiological basis of yield and its components in rapeseed-mustard with reference to photoperiod. Indian J Plant Physiol 37:142146

    Google Scholar 

  • Negri MC, Hinchman RR (2000) The use of plant for the treatment of radionuclides. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 107–132

    Google Scholar 

  • Neilson S, Rajakaruna N (2012) Roles of rhizospheric processes and plant physiology in phytoremediation of contaminated sites using oilseed Brassicas. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA

    Google Scholar 

  • Nishi S (1980) Differentiation of Brassica crops in Asia and the breeding of “Hakuran”, a newly synthesized leafy vegetable. In: Tsunoda S et al (eds) Brassica crops and wild allies—biology and breeding. Jpn Sci Soc Press, Tokyo, pp 133–150

    Google Scholar 

  • Nyquist J, Greger MA (2009) Field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng 35:630–642

    Google Scholar 

  • Ochiai EI (1987) General principles of biochemistry of the elements. Plenum Press, New York

    Google Scholar 

  • Ohlendorf HM, HoffmanDJ Saiki MK, Aldrich TW (1986) Embryonic mortality and abnormalities of birds: apparent impacts of selenium from irrigation drain water. Sci Total Environ 52:49–63

    CAS  Google Scholar 

  • Okeniyi JAO, Ogunlesi TA, Oyelami OA, Adeyemi LA (2007) Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: a pilot study. J Med Food 10:194–196

    PubMed  Google Scholar 

  • Palmer CE, Warwick S, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytoremediation 3:245–287

    CAS  Google Scholar 

  • Pang ECK, Halloran GM (1996) The genetics of adult plant blackleg (Leptosphaeria maculans) resistance from B. juncea in B. napus. Theor Appl Genet 92:382–387

    CAS  PubMed  Google Scholar 

  • Pantola RC, Alam A (2014) Potential of Brassicaceae Burnett (Mustard family; Angiosperms) in phytoremediation of heavy metals. Int J Sci Res Environ Sci 2(4):120–138

    Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75:808–814

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    CAS  PubMed  Google Scholar 

  • Pilon-Smits E, Pilon M (2000) Breeding mercury-breathing plants for environmental clean-up. Trends Plant Sci 5(6):235–236

    CAS  PubMed  Google Scholar 

  • Pollard AJ, Dandridge KL, Shee EM (2000) Ecological genetics and the evolution of trace element hyperaccumulation in plants. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, FL, USA, pp 251–264

    Google Scholar 

  • Poschenrieder C, Barceló J (1999) Water relations in heavy metal stressed plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. From molecules to ecosystems. Springer, Berlin, pp 207–229

    Google Scholar 

  • Poschenrieder CH, Barceló J (2004) Estrés por metales pesados. In: Reigosa MJ, Pedrol N, Sánchez A (eds) La ecofisiologia vegetal: Una ciencia de síntesis. Thomson, Madrid, pp 413–442

    Google Scholar 

  • Prakash S (1980) Cruciferous oilseeds in India. In: Tsunoda S et al (eds) Brassica crops and wild allies—biology and breeding. Jpn Sci Soc Press, Tokyo, pp 151–166

    Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 345–391

    Google Scholar 

  • Prasad MNV (2005) Nickelophilous plants and their significance in phytotechnologies. Braz J Plant Physiol 17:113–128

    CAS  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Pratas J, Favas PJC, Paulo C, Rodrigues N, Prasad MNV (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. Int J Phytorem 14:221–234

    CAS  Google Scholar 

  • Qiu YL, Li LB, Wang B, Xue JY, Hendry TA, Li RQ, Brown JW, Liu Y, Hudson GT, Chen ZD (2010) Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J Syst Evol 48:391–425

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  PubMed  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    CAS  PubMed  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazain R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Reeves RD, Brooks RR, Dudley TR (1983) Uptake of nickel by species of Alyssum, Bornmuellera and other genera of old world Tribus Alysseae. Taxon 32:184–192

    Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddiifor phytoremediation and phytomining. J Geochem Explor 60:115–126

    CAS  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27(2):73–81

    PubMed  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focussing on phytoremediation technology. Environ Sci Technol 4:118–138

    CAS  Google Scholar 

  • Sharma H (2016) Phytoremediation of lead using Brassica juncea and Vetiveria zizanioides. Int J Life Sci Res 4(1):91–96

    Google Scholar 

  • Sauer JD (1993) Historical geography of crop plants—a select roster. CRC Press, Boca Raton, FL

    Google Scholar 

  • Saxena PK, Raj SK, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of heavy metal contaminated and polluted soils. In: Prasad MNV, Hagemayr J (eds) Heavy metal stress in plants. From molecules to ecosystems. Springer, Berlin, pp 305–329

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    CAS  PubMed  Google Scholar 

  • Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 133–150

    Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    CAS  Google Scholar 

  • Singh A, Kumar D, Sahu A (2014) J Environ Biol 283:59–365

    Google Scholar 

  • Singh A, Prasad P (2014) Evaluation of potential of Brassica juncea for removal of arsenic from hydroponic solution. Int J Curr Microbiol App Sci 3(12):246–252

    Google Scholar 

  • Sobolewski A (1999) A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int J Phytorem 1(1):19–51

    CAS  Google Scholar 

  • Szczyglowska M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y-T, Qiu R-L, Zeng X-W, Ying R-R, Yu F-M, Zhou X-Y (2009) Lead, zinc, cadmium accumulation and growth simulation in Arabis paniculata Franch. Environ Exp Bot 66:126–134

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 939161:1–31

    Google Scholar 

  • Thakral SK, Singh BP, Faroda AS, Gupta SK, Kumar S (1995) Fatty acids composition in seeds of Brassica species as affected by moisture and fertility levels. Crop Res 10:137–140

    Google Scholar 

  • Tolrà RP, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II Influence on organic acids. J Plant Nutr 19:1541–1550

    Google Scholar 

  • Tolrà RP, Poschenrieder C, Alonso R, Barceló D, Barceló J (2001) Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytol 151:621–626

    Google Scholar 

  • Tomar TS, Singh S, Kumar S, Tomar S (1997) Response of Indian mustard (Brassica juncea) to nitrogen, phosphorus and sulfur fertilization. Indian J Agron 42:148–151

    CAS  Google Scholar 

  • USEPA (2000) Introduction to phytoremediation. EPA, Washington, DC

    Google Scholar 

  • Vamerali T, Bandiera M, Mosca D (2010) Field crops for phytoremediation of metal contaminated land. A review. Environ Chem Lett 8:1–17

    CAS  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • Vázquez MD, Barceló J, Poschenrieder C, Mádico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350–355

    Google Scholar 

  • Vázquez MD, Poschenrieder C, Barceló J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. J & C Presl. Bot Acta 107:243–250

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    CAS  PubMed  Google Scholar 

  • Vijayarengan P (2005) Nitrogen and potassium status of greengram (Vigna radiata) cultivars under nickel stress. Nat Environ Pollut Technol 4(1):65–69

    CAS  Google Scholar 

  • Vogel-Mikuŝ K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine. Environ Pollut 133:233–242

    PubMed  Google Scholar 

  • Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17

    Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Plant Gene. Geno. Crop Models 9:33–65

    Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269281

    Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Gen Bio 10:07

    Google Scholar 

  • Whitting SN, Neumann PM, Baker AJM (2003) Nickel and zinc hyperaccumulation by Alyssum murale and Thlaspi caerulescens (Brassicaceae) do not enhance survival and whole—plant growth under drought stress. Plant Cell Environ 26:351–360

    Google Scholar 

  • Williamson A, Johnson MS (1981) Reclamation of metalliferous mine wastes. In: Lepp NW (ed) Effect of heavy metal pollution on plants, vol. 2. Metals in the environment. Applied Science Publishers, London, pp 185–212

    Google Scholar 

  • Williamson NA, Johnson MS, Bradshaw AD (1982) Mine wastes reclamation. The establishment of vegetation on metal mine wastes. Mining Journal Books, London

    Google Scholar 

  • Wu L, Chen J, Tanji KK, Bañuelos GS (1995) Distribution and biomagnification of selenium in a restored upland grassland contaminated by selenium from agricultural drain water. Environ Tox Chem 14:733–742

    Google Scholar 

  • Wu HB, Tang SR (2009) Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861–870

    CAS  PubMed  Google Scholar 

  • Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environmen Sci Technol 43(22):8488–8495

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Yang G, Wang S, Zhou R, Sun S (1983) Endemic selenium in toxication of humans in China. Am J Clin Nutr 37:872–881

    CAS  PubMed  Google Scholar 

  • Zaurov DE, Perdomo P, Raskin I (1999) Optimizing soil fertility and pH to maximize cadmium removed by Indian mustard from contaminated soils. J Plant Nutr 22(6):977–986

    Google Scholar 

  • Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    PubMed  Google Scholar 

  • Zeven AC, Zhukovsky PM (1975) Dictionary of cultivated plants and their centres of diversity—excluding ornamentals, forest trees and lower plants. Pudoc, Wageningen

    Google Scholar 

  • Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22:299–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N. (2020). Phytoremediation of Toxic Metals/Metalloids and Pollutants by Brassicaceae Plants. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_14

Download citation

Publish with us

Policies and ethics