Skip to main content

Heavy Metal Toxicity and Phytoremediation by the Plants of Brassicaceae Family: A Sustainable Management

  • Chapter
  • First Online:
Sustainable Management of Environmental Contaminants

Abstract

Heavy metals (Pb, Cd, Ni, Co, Fe, Zn, Cr, As, Ag, platinum group, etc.) in trace amounts are natural components of the environment. However, their presence in excess may cause a serious threat to the stability of the ecosystem by inducing a drastic change in the quality and yield of crop products. Heavy metal toxicity in the agro-ecosystem has now become a major challenge for the planet. To increase crop productivity, it is necessary to evolve efficient, low-cost technologies for reducing metal toxicity. Many appropriate technologies are available for removing or reducing such toxicants but as a cost-effective, eco-friendly, and sustainable method—phytoremediation is gaining worldwide attention for its effectiveness. In the present book chapter, we attempt an overview of current knowledge on the roles of several species of plants from the family Brassicaceae as metal hyper-accumulators. Characteristics of plant species of Brassicaceae as phytoremediators of heavy metals, detailed mechanisms of phytoremediation by plants from the Brassicaceae family, and methods to enhance heavy metal phytoextraction by using chelating chemicals or through biotechnology and genetic engineering have been focused.

Kakan Ball and Zerald Tiru: Both the authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullahi M (2015) Soil contamination, remediation and plants: prospects and challenges. In: Khalid RH, Muhammad S, Munir O, Ahmet RM (eds) Soil remediation and plants, 525

    Google Scholar 

  • Abedi T, Mojiri A (2020) Arsenic uptake and accumulation mechanisms in rice species. Plants 9(2):129

    Article  CAS  Google Scholar 

  • Ahmad A, Shahzadi I, Mubeen S, Yasin NA, Akram W, Khan WU, Wu T (2021) Karrikinolide alleviates BDE-28, heat and Cd stressors in Brassica alboglabra by correlating and modulating biochemical attributes, antioxidative machinery and osmoregulators. Ecotoxicol Environ Saf 213:112047

    Article  CAS  Google Scholar 

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran L-SP (2015) Alleviation of cadmium toxicity in Brassica juncea L.(Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PloS One 10(1):e0114571

    Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, …, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS ONE 10(4):e0123328

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Ali S, Shahid MJ, Hussain A, Rizwan M, Ahmad A, Adrees M (2021) Metals phytoextraction by Brassica species. In: Approaches to the remediation of inorganic pollutants, pp 361–384

    Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Heavy metals in soils. Springer, pp 11–50

    Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27(13):2630–2636

    Article  CAS  Google Scholar 

  • Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R (2021) Metal and metalloid toxicity in plants: an overview on molecular aspects. Plants 10(4):635

    Article  CAS  Google Scholar 

  • Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, …, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4:69

    Google Scholar 

  • Armas T, Pinto AP, de Varennes A, Mourato MP, Martins LL, Gonçalves MLS, Mota AM (2015) Comparison of cadmium-induced oxidative stress in Brassica juncea in soil and hydroponic cultures. Plant Soil 388(1):297–305

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):1–18

    Article  CAS  Google Scholar 

  • Baker A, McGrath S, Sidoli C, Reeves R (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11(1–4):41–49

    Article  Google Scholar 

  • Baker AJ, McGrath S, Reeves RD, Smith J (2020) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soil and water, pp 85–107

    Google Scholar 

  • Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Ruiz JM, Blasco B (2014) Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates. Environ Exp Bot 107:98–104

    Article  CAS  Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212(5):696–709

    Article  CAS  Google Scholar 

  • Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, …, Vandenbulcke F (2015)Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review.Ecotoxicol Environ Saf 114:273–303

    Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131(2):463–471

    Article  CAS  Google Scholar 

  • Blasco B, Graham NS, Broadley MR (2015) Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. J Plant Physiol 176:16–24

    Article  CAS  Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204

    Article  CAS  Google Scholar 

  • Bosiacki M, Kleiber T, Markiewicz B (2014) Continuous and induced phytoextraction—plant-based methods to remove heavy metals from contaminated soil. In: Environmental risk assessment of soil contamination. IntechOpen

    Google Scholar 

  • Boye K (2002) Phytoextraction of Cu, Pb and Zn: a greenhouse study. Sveriges lantbruksuniv

    Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    Article  CAS  Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJ, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152(1):9–27

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Cabral L, Soares CRFS, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31(11):1655–1664

    Article  CAS  Google Scholar 

  • Carrió-Seguí À, Romero P, Curie C, Mari S, Peñarrubia L (2019) Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation. Sci Rep 9(1):1–14

    Article  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, …, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19(3):1123–1133

    Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15(3)

    Google Scholar 

  • Chen Y, Yang W, Chao Y. Wang S, Tang Y-T, Qiu R-L (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413(1–2):203–216

    Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39(24):9377–9390

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  Google Scholar 

  • Cointry V, Vert G (2019) The bifunctional transporter-receptor IRT 1 at the heart of metal sensing and signalling. New Phytol 223(3):1173–1178

    Article  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, …, Artois TJ (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940

    Google Scholar 

  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20(14):3412

    Article  CAS  Google Scholar 

  • Dar MI, Khan FA, Rehman F, Masoodi A, Ansari AA, Varshney D, …, Naikoo MI (2015) Roles of Brassicaceae in phytoremediation of metals and metalloids. Phytoremediation 201–215

    Google Scholar 

  • de Souza MP, Lytle CM, Mulholland MM, Otte ML, Terry N (2000) Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiol 122(4):1281–1288. https://doi.org/10.1104/pp.122.4.1281

    Article  Google Scholar 

  • Dhankher OP, Pilon-Smits EA, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. In: Plant biotechnology and agriculture. Elsevier, pp 309–328

    Google Scholar 

  • Dushenkov V, Kumar PN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29(5):1239–1245

    Article  CAS  Google Scholar 

  • Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S (2018) Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal Behav 13(8):e1460048

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation (0047-2425)

    Google Scholar 

  • Eisenhut M, Hoecker N, Schmidt SB, Basgaran RM, Flachbart S, Jahns P, …, Weber AP (2018) The plastid envelope chloroplast Manganese transporter1 is essential for manganese homeostasis in Arabidopsis. Mol Plant 11(7):955–969

    Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  • Erakhrumen AA, Agbontalor A (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2(7):151–156

    Google Scholar 

  • Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41(5):1201–1232

    Article  CAS  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Tugyi N, Molnár Á, Ördög A, …, Erdei L (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94179–189

    Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  Google Scholar 

  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J, Kynicky J (2017) Oxidative stress and heavy metals in plants. Rev Environ Contam Toxicol 245:129–156

    CAS  Google Scholar 

  • Fu S, Lu Y, Zhang X, Yang G, Chao D, Wang Z, …, Li R (2019) The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot 70(20):5909–5918

    Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  CAS  Google Scholar 

  • Ghasemi R, Ghaderian SM, Krämer U (2009) Accumulation of nickel in trichomes of a nickel hyperaccumulator plant Alyssum Inflatum. Northeast Nat 16(sp5):81–92

    Article  Google Scholar 

  • Ghnaya AB, Charles G, Hourmant A, Hamida JB, Branchard M (2009) Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C R Biol 332(4):363–370

    Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17(1):53–64

    Article  Google Scholar 

  • Gu D, Zhou X, Ma Y, Xu E, Yu Y, Liu Y, …, Zhang W (2021) Expression of a Brassica napus metal transport protein (BnMTP3) in Arabidopsis thaliana confers tolerance to Zn and Mn. Plant Sci 304:110754

    Google Scholar 

  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, …, Farooq M (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  Google Scholar 

  • Hamzah A, Hapsari RI, Wisnubroto EI (2016) Phytoremediation of cadmium-contaminated agricultural land using indigenous plants. Int J Environ Agric Res 2(1):8–14

    Google Scholar 

  • Hasan M, Uddin M, Ara-Sharmeen I, Alharby HF, Alzahrani Y, Hakeem KR, Zhang L (2019)Assisting phytoremediation of heavy metals using chemical amendments.Plants 8(9):295

    Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, …, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Google Scholar 

  • Huang Y, Chen J, Zhang D, Fang B, YangJin T, Zou J, …, Cui J (2021) Enhanced vacuole compartmentalization of cadmium in root cells contributes to glutathione-induced reduction of cadmium translocation from roots to shoots in pakchoi (Brassica chinensis L.). Ecotoxicol Environ Saf 208:111616

    Google Scholar 

  • Iqbal M, Iqbal N, Bhatti IA, Ahmad N, Zahid M (2016) Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste. Ecol Eng 88:265–275

    Article  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60

    Article  Google Scholar 

  • Ji R, Zhou L, Liu J, Wang Y, Yang L, Zheng Q, …, Yang Y (2017) Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1; 1 and regulates arsenite uptake in Arabidopsis thaliana. PLoS ONE 12(3):e0173681

    Google Scholar 

  • Jogawat A, Yadav B, Narayan OP (2021) Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol Plant

    Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Cadmium and lead-induced changes in lipid peroxidation, antioxidative enzymes and metal accumulation in Brassica juncea L. at three different growth stages. Arch Agron Soil Sci 55(4):395–405

    Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283

    Google Scholar 

  • Kaur D, Singh A, Kumar A, Gupta S (2020) Genetic engineering approaches and applicability for the bioremediation of metalloids. In: Plant life under changing environment. Elsevier, pp 207–235

    Google Scholar 

  • Kaur R, Bhardwaj R, Thukral AK, Narang U (2011) Interactive effects of binary combinations of manganese with other heavy metals on metal uptake and antioxidative enzymes in Brassica juncea L. seedlings. J Plant Interact 6(1):25–34

    Google Scholar 

  • Kaur R, Sharma S, Kaur H (2019) Heavy metals toxicity and the environment. J Pharmacognosy Phytochem SP1:247–249

    Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218

    Article  CAS  Google Scholar 

  • Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, …, Clyne M (2021) Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. Plant J 107(1):215–236

    Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16(2):133–141. https://doi.org/10.1016/j.copbio.2005.02.006

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122(4):1343–1354

    Article  CAS  Google Scholar 

  • Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115(4):1641–1650

    Article  CAS  Google Scholar 

  • Kumar PN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238

    Article  CAS  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  Google Scholar 

  • Kumar S, Trivedi PK (2016) Heavy metal stress signaling in plants. In: Plant metal interaction. Elsevier, pp 585–603

    Google Scholar 

  • Kupper H, Jie Zhao F, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119(1):305–312

    Article  CAS  Google Scholar 

  • Laboratory NRMR (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development

    Google Scholar 

  • Lallement P-A, Roret T, Tsan P, Gualberto JM, Girardet J-M, Didierjean C, …, Hecker A (2016) Insights into ascorbate regeneration in plants: investigating the redox and structural properties of dehydroascorbate reductases from Populus trichocarpa. Biochem J 473(6):717–731

    Google Scholar 

  • Lee BXY, Hadibarata T, Yuniarto A (2020) Phytoremediation mechanisms in air pollution control: a review. Water Air Soil Pollut 231(8):1–13

    Article  Google Scholar 

  • Lemtiri A, Liénard A, Alabi T, Brostaux Y, Cluzeau D, Francis F, Colinet G (2016) Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Appl Soil Ecol 104:67–78

    Article  Google Scholar 

  • Li J, Chang Y, Al-Huqail AA, Ding Z, Al-Harbi MS, Ali EF, …, Ghoneim AM (2021) Effect of manure and compost on the phytostabilization potential of heavy metals by the halophytic plant wavy-leaved saltbush. Plants 10(10):2176

    Google Scholar 

  • Li J, Wang Y, Zheng L, Li Y, Zhou X, Li J, …, Chen X (2019) The intracellular transporter AtNRAMP6 is involved in Fe homeostasis in Arabidopsis. Front Plant Sci 10:1124

    Google Scholar 

  • Li W, Lacey RF, Ye Y, Lu J, Yeh K-C, Xiao Y, …, Zhao Y (2017) Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genet 13(4):e1006703

    Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50(13):6632–6643

    Article  CAS  Google Scholar 

  • Liu J, Wang J, Lee S, Wen R (2018) Copper-caused oxidative stress triggers the activation of antioxidant enzymes via ZmMPK3 in maize leaves. PLoS ONE 13(9):e0203612

    Article  Google Scholar 

  • Liu S, Yang B, Liang Y, Xiao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollut Res 27(14):16069–16085

    Article  CAS  Google Scholar 

  • Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, …, Yang ZM (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19(1):1–16

    Google Scholar 

  • Luo J-S, Zhang Z (2021) Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J

    Google Scholar 

  • Ma J, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65(19):3049–3057

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Article  Google Scholar 

  • Martínez M, Bernal P, Almela C, Vélez D, García-Agustín P, Serrano R, Navarro-Aviñó J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64(3):478–485

    Article  Google Scholar 

  • Małecka A, Konkolewska A, Hanć A, Barałkiewicz D, Ciszewska L, Ratajczak E, …, Jarmuszkiewicz W (2019) Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activity. Int J Mol Sci 20(18)

    Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    Article  CAS  Google Scholar 

  • Mellem JJ, Baijnath H, Odhav B (2012) Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr J Agric Res 7(4):591–596

    Google Scholar 

  • Meng JG, Zhang XD, Tan SK, Zhao KX, Yang ZM (2017) Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus. Biometals 30(6):917–931

    Article  CAS  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Article  Google Scholar 

  • Mishra I, Arora NK (2019) Rhizoremediation: a sustainable approach to improve the quality and productivity of polluted soils. In: Phyto and rhizo remediation. Springer, pp 33–66

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164(5):601–610

    Article  CAS  Google Scholar 

  • Morikawa H, Erkin ÖC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52(9):1553–1558

    Article  CAS  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567. https://doi.org/10.1021/cr900112r

    Article  CAS  Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. Adv Sel Plant Physiol Aspects 12:1–17

    Google Scholar 

  • Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of Heavy Metals in Plants of the Genus Brassica. Int J Mol Sci 16(8):17975–17998. https://doi.org/10.3390/ijms160817975

    Article  CAS  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617

    Article  CAS  Google Scholar 

  • Muradoglu F, Gundogdu M, Ercisli S, Encu T, Balta F, Jaafar HZ, Zia-Ul-Haq M (2015) Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res 48:1–7

    Article  Google Scholar 

  • Młodzińska E, Zboińska M (2016) Phosphate uptake and allocation—a closer look at Arabidopsis thaliana L. and Oryza sativa L. Front Plant Sci 7:1198

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Narayan OP, Verma N, Jogawat A, Dua M, Johri AK (2020) Role of sulphate transporter (PiSulT) of endophytic fungus Serendipita indica in plant growth and development. BioRxiv

    Google Scholar 

  • Nazir F, Fariduddin Q, Khan TA (2020) Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252:126486

    Article  CAS  Google Scholar 

  • Nedjimi B (2021) Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Appl Sci 3(3):1–19

    Article  Google Scholar 

  • Neff J, Lee K, DeBlois EM (2011) Produced water: overview of composition, fates, and effects. Produced Water 3–54

    Google Scholar 

  • Nigam S, Sinha S (2021) Phytoremediation: an eco-friendly and sustainable approach for the removal of toxic heavy metals. In: Removal of refractory pollutants from wastewater treatment plants. CRC Press, pp 417–432

    Google Scholar 

  • Nishida S, Tanikawa R, Ishida S, Yoshida J, Mizuno T, Nakanishi H, Furuta N (2020) Elevated expression of vacuolar nickel transporter gene IREG2 is associated with reduced root-to-shoot nickel translocation in Noccaea japonica. Front Plant Sci 11:610

    Article  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170(3):511–519

    Article  CAS  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Miled DDB, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31(2):237–247

    Article  CAS  Google Scholar 

  • Okumura S, Mitsukawa N, Shirano Y, Shibata D (1998) Phosphate transporter gene family of Arabidopsis thaliana. DNA Res 5(5):261–269

    Article  CAS  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13(6):7828–7853. https://doi.org/10.3390/ijms13067828

    Article  CAS  Google Scholar 

  • O’Lexy R, Kasai K, Clark N, Fujiwara T, Sozzani R, Gallagher KL (2018) Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. J Exp Bot 69(15):3715–3728

    Article  Google Scholar 

  • Palmer CE, Warwick S, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytorem 3(3):245–287

    Article  CAS  Google Scholar 

  • Picault N, Cazalé A, Beyly A, Cuiné S, Carrier P, Luu D, …, Peltier G (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88(11):1743–1750

    Google Scholar 

  • Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47(1):41–47

    Google Scholar 

  • Pichtel J (2016) Oil and gas production wastewater: soil contamination and pollution prevention. Appl Environ Soil Sci 2016

    Google Scholar 

  • Pilon-Smits EA, Freeman JL (2006) Environmental cleanup using plants: biotechnological advances and ecological considerations. Front Ecol Environ 4(4):203–210

    Article  Google Scholar 

  • Pilon-Smits EA, Hwang S, Mel Lytle C, Zhu Y, Tai JC, Bravo RC, …, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119(1):123–132. https://doi.org/10.1104/pp.119.1.123

  • Pilon-Smits EA, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20(2):207–212

    Article  CAS  Google Scholar 

  • Pivetz BE (2001) Phytoremediation of contaminated soil and ground water at hazardous waste sites. US Environmental Protection Agency, Office of Research and Development

    Google Scholar 

  • Podar D, Ramsey MH, Hutchings MJ (2004) Effect of cadmium, zinc and substrate heterogeneity on yield, shoot metal concentration and metal uptake by Brassica juncea: implications for human health risk assessment and phytoremediation. New Phytol 163(2):313–324

    Article  CAS  Google Scholar 

  • Polle A, Schützendübel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses. In: Plant responses to abiotic stress. Springer, pp 187–215

    Google Scholar 

  • Ponce-Hernández A, Alonso-Castro AJ, García-De La Cruz RF, Carranza-Alvarez C (2022) Engineering plants for metal tolerance and accumulation. In: Phytoremediation. Elsevier, pp 455–480

    Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40(6–8):537–548

    Article  CAS  Google Scholar 

  • Rafique N, Tariq SR (2016) Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields. Environ Monit Assess 188(5):309

    Article  Google Scholar 

  • Rai PK, Kim K-H, Lee SS, Lee J-H (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    Article  CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  Google Scholar 

  • Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, …, Kumar D (2021)Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. Physiol Plant 171(4):882–895

    Google Scholar 

  • Rajendran S, Priya T, Khoo KS, Hoang TK, Ng H-S, Munawaroh HSH, …, Show PL (2022) A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287:132369

    Google Scholar 

  • Raskin I, Ensley B (2000) Recent developments for in situ treatment of metal contaminated soils. In: Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons Inc., New York. Available at: http//clu-n.org/techfocus

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci 93(8):3182–3187

    Article  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20(2):213–219. https://doi.org/10.1016/j.copbio.2009.02.010

    Article  CAS  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132(3):1344–1352

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109(4):1427–1433

    Article  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138

    Article  CAS  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937

    Article  CAS  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71(1):76–85

    Article  CAS  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, …, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Google Scholar 

  • Sharma P, Bakshi P, Kour J, Singh AD, Dhiman S, Kumar P, …, Bhardwaj R (2020) PGPR and earthworm-assisted phytoremediation of heavy metals. In: Earthworm assisted remediation of effluents and wastes. Springer, pp 227–245

    Google Scholar 

  • Sharma P, Jha A, Bauddh K, Korstad J, Dubey R (2021) Efficient utilization of plant biomass after harvesting the phytoremediator plants. In: Phytorestoration of abandoned mining and oil drilling sites. Elsevier, pp 57–84

    Google Scholar 

  • Sharma R, Kumar R, Hajam YA, Rani R (2022) Role of biotechnology in phytoremediation. In: Phytoremediation. Elsevier, pp 437–454

    Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2010) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41(2):168–214

    Article  Google Scholar 

  • Sidhu GS (2016) Heavy metal toxicity in soils: sources, remediation technologies and challenges. Adv Plants Agric Res 5(1):445–446

    Google Scholar 

  • Sikka R, Nayyar V (2012) Cadmium accumulation and its effects on uptake of micronutrients in Indian mustard [Brassica juncea (L.) czern.] grown in a loamy sand soil artificially contaminated with cadmium. Commun Soil Sci Plant Anal 43(4):672–688

    Google Scholar 

  • Singh K, Sharmila P, Kumar PA, Pardha-Saradhi P (2021a) Successful expression of the synthetic merBps gene in tobacco. Plant Physiol Biochem 167:874–883

    Google Scholar 

  • Singh R, Misra AN, Sharma P (2021b). Safe, efficient, and economically beneficial remediation of arsenic-contaminated soil: possible strategies for increasing arsenic tolerance and accumulation in non-edible economically important native plants. Environ Sci Pollut Res 1–17

    Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Article  Google Scholar 

  • Smart K, Kilburn M, Salter C, Smith J, Grovenor C (2007) NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Int J Mass Spectrom 260(2–3):107–114

    Article  CAS  Google Scholar 

  • Song B, Xu P, Chen M, Tang W, Zeng G, Gong J, …, Ye S (2019) Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit Rev Environ Sci Technol 49(9):791–824

    Google Scholar 

  • Souri Z, Karimi N, Sarmadi M, Rostami E (2017) Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under As stress. IET Nanobiotechnol 11(6):650–655

    Google Scholar 

  • Spielmann J, Ahmadi H, Scheepers M, Weber M, Nitsche S, Carnol M, …, Clemens S (2020) The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. Plant Cell Environ 43(9): 2143–2157

    Google Scholar 

  • Srivastava S, Anand V, Singh P, Roy A, Pallavi S, Bist V, …, Srivastava S (2021) Microbial systems as a source of novel genes for enhanced phytoremediation of contaminated soils. In: Microbe mediated remediation of environmental contaminants, pp 177–198

    Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  • Tian S, Liang S, Qiao K, Wang F, Zhang Y, Chai T (2019) Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). J Hazard Mater 380:120853

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • ur Rehman MZ, Rizwan M, Ali S, Ok YS, Ishaque W, Nawaz MF, …, Waqar M (2017) Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. Ecotoxicol Environ Saf 143:236–248

    Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EA (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea. Planta 218(1):71–78. https://doi.org/10.1007/s00425-003-1070-z

    Article  CAS  Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Google Scholar 

  • Vert G, Barberon M, Zelazny E, Séguéla M, Briat J-F, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229(6):1171–1179

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(1):1–12

    Article  CAS  Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39(1):3–17

    Article  CAS  Google Scholar 

  • Vázquez M, Poschenrieder C, Barceló J, Baker A, Hatton P, Cope G (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl. Bot Acta 107(4):243–250

    Article  Google Scholar 

  • Wang G, Wang L, Ma F, You Y, Wang Y, Yang D (2020) Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. J Hazard Mater 389:121873

    Article  CAS  Google Scholar 

  • Wang M, Xu Q, Yu J, Yuan M (2010) The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress. Plant Mol Biol 73(4):467–479

    Article  CAS  Google Scholar 

  • Wang S-H, Yang Z-M, Yang H, Lu B, Li S-Q, Lu Y-P (2004) Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Bot Bull Acad Sinica 45

    Google Scholar 

  • Waters BM, Chu H-H, DiDonato RJ, Roberts LA, Eisley RB, Lahner B, …, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141(4):1446–1458

    Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235. https://doi.org/10.1093/aob/mcv180

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Not 2011

    Google Scholar 

  • Yadav B, Jogawat A, LalNITRATE SK, Lakra N, Mehta S, Shabek N, Narayan OP (2021) Plant mineral transport systems and the potential for crop improvement. Planta 253(2):1–30

    Google Scholar 

  • Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, Terada Y (2012) Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J Exp Bot 63(7):2729–2737

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  Google Scholar 

  • Zaier H, Mudarra A, Kutscher D, De La Campa MF, Abdelly C, Sanz-Medel A (2010) Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry. Anal Chim Acta 671(1–2):48–54

    Article  CAS  Google Scholar 

  • Zhang X, Chen B, Ohtomo R (2015) Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Sci Plant Nutr 61(2):359–368

    Article  CAS  Google Scholar 

  • Zhang X, Li Q, Xu W, Zhao H, Guo F, Wang P, …, Wei C (2020) Identification of MTP gene family in tea plant (Camellia sinensis L.) and characterization of CsMTP8. 2 in manganese toxicity. Ecotoxicol Environ Saf 202:110904

    Google Scholar 

  • Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57(14):3575–3582

    Article  Google Scholar 

  • Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403

    Article  CAS  Google Scholar 

  • Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, …, Zhang L (2019) Nanomaterials and plants: positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Sci Total Environ 662:414–421

    Google Scholar 

  • Zhu Y-G, Pilon-Smits EA, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Sadhukhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ball, K., Tiru, Z., Chakraborty, A.P., Mandal, P., Sadhukhan, S. (2022). Heavy Metal Toxicity and Phytoremediation by the Plants of Brassicaceae Family: A Sustainable Management. In: Aftab, T. (eds) Sustainable Management of Environmental Contaminants. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-08446-1_8

Download citation

Publish with us

Policies and ethics