Skip to main content

Numerical Characteristics of Silicon Nitride SiH4/NH3/H2 Plasma Discharge for Thin Film Solar Cell Deposition

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems (ICEERE 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 681))

Abstract

The creation of a uniform deposition requires a thorough study and understanding of the different characteristics of plasma discharge. In this work, we are interested in modeling a radiofrequency (RF) plasma discharge using silicon nitride gases SiH4/NH3/H2. The plasma equations are solved using the numerical finite element method until a periodic steady state is obtained. The numerical results show the fundamental characteristics of RF plasma between the two reactor electrodes. These characteristics allow us to describe the physics of plasma discharge so that physico-chemical processes can be implemented for more efficient and less costly deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonilla RS, Hoex BP, Hamer, Wilshaw PR (2017) Dielectric surface passivation for silicon solar cells: a review. Phys Status Solidi (a) 214(7):1700293

    Google Scholar 

  2. Chen B, Zhang Y, Ouyang Q, Chen F, Zhan X, Gao W (2017) The SiNx films process research by plasma-enhanced chemical vapor deposition in crystalline silicon solar cells. Int J Mod Phys B 31(16–19):1744101

    Article  Google Scholar 

  3. Bonilla RS, Jennison N, Clayton-Warwick D, Collett KA, Rands L, Wilshaw PR (2016) Corona charge in SiO2: kinetics and surface passivation for high efficiency silicon solar cells. Energy Procedia 92:326–335

    Article  Google Scholar 

  4. Pan HW, Kuo LC, Huang SY, Wu MY, Juang YH, Lee CW, Chao S (2018) Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector. Phys Rev D 97(2):022004

    Article  Google Scholar 

  5. Kim HJ, Yang W, Joo J (2015) Effect of electrode spacing on the density distributions of electrons, ions, and metastable and radical molecules in SiH4/NH3/N2/He capacitively coupled plasmas. J Appl Phys 118(4):043304

    Article  Google Scholar 

  6. Kim BH, Cho CH, Kim TW, Park NM, Sung GY, Park SJ (2005) Photoluminescence of silicon quantum dots in silicon nitride grown by NH 3 and SiH 4. Appl Phys Lett 86(9):091908

    Article  Google Scholar 

  7. Novikova T, Kalache B, Bulkin P, Hassouni K, Morscheidt W, Roca i Cabarrocas P (2003) Numerical modeling of capacitively coupled hydrogen plasmas: effects of frequency and pressure. J Appl Phys 93(6):3198–3206

    Article  Google Scholar 

  8. Xia H, Xiang D, Yang W, Mou P (2016) Multi-model simulation of 300 mm silicon-nitride thin-film deposition by PECVD and experimental verification. Surf Coat Technol 297:1–10

    Article  Google Scholar 

  9. Bavafa M, Ilati H, Rashidian B (2008) Comprehensive simulation of the effects of process conditions on plasma enhanced chemical vapor deposition of silicon nitride. Semicond Sci Technol 23(9):095023

    Article  Google Scholar 

  10. Joo J (2011) Numerical modeling of SiH4 discharge for Si thin film deposition for thin film transistor and solar cells. Thin Solid Films 519(20):6892–6895

    Article  Google Scholar 

  11. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. Wiley, Hoboken

    Book  Google Scholar 

  12. Smirnov BM (2008) Physics of ionized gases. Wiley, Hoboken

    Google Scholar 

  13. Morgan database. www.lxcat.net. Accessed 27 Oct 2016

  14. Meryem G, CifAllah Z (2019) Numerical modeling of plasma silicon discharge for photovoltaic application. Mater Today Proc 13:882–888

    Article  Google Scholar 

  15. Boeuf JP, Pitchford LC (2005) Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J Appl Phys 97(10):103307

    Article  Google Scholar 

  16. Samir T, Liu Y, Zhao LL, Zhou YW (2017) Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure. Chin Phys B 26(11):115201

    Article  Google Scholar 

  17. Kawamura E, Lieberman MA, Lichtenberg AJ (2018) Symmetry breaking in a high frequency, low pressure, symmetric capacitive coupled plasma (CCP) reactor. In: APS meeting abstracts

    Google Scholar 

  18. Daoxin H, Jia C, Linhong J, Yuchun S (2012) Simulation of cold plasma in a chamber under high-and low-frequency voltage conditions for a capacitively coupled plasma. J Semicond 33(10):104004

    Article  Google Scholar 

  19. Kim HJ, Lee HJ (2017) Effects of the wall boundary conditions of a showerhead plasma reactor on the uniformity control of RF plasma deposition. J Appl Phys 122(5):053301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Grari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grari, M., Zoheir, C. (2021). Numerical Characteristics of Silicon Nitride SiH4/NH3/H2 Plasma Discharge for Thin Film Solar Cell Deposition. In: Hajji, B., Mellit, A., Marco Tina, G., Rabhi, A., Launay, J., Naimi, S. (eds) Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems. ICEERE 2020. Lecture Notes in Electrical Engineering, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-15-6259-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6259-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6258-7

  • Online ISBN: 978-981-15-6259-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics