Skip to main content

Nanophotonic Techniques for Single-Cell Analysis

  • Chapter
  • First Online:
Nanophotonics in Biomedical Engineering

Abstract

Single-cell analysis is an essential tool with numerous applications in biological and medical analyses. Nanophotonic techniques are emerging methods that use nanoscale devices and electromagnetic waves to extract information from a single cell. These techniques generally use the visible spectrum or the near-IR region of the electromagnetic spectrum. Various techniques have been developed by researchers, each for a specific purpose. These methods include mass spectrometry, quantum dots, nanolasers and spasers, optofluidics, zero-mode waveguides, nanoantennas, etc. This chapter gives an overview of these techniques when applied for single-cell analysis. Their basic working principles, key variants, and benefits are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang D, Zhao X, Gu Z. Advanced optoelectronic nanodevices and nanomaterials for sensing inside single living cell. Opt Commun. 2017;395:3–15. https://doi.org/10.1016/j.optcom.2016.03.047.

    Article  CAS  Google Scholar 

  2. Lumen unique characteristics of eukaryotic cells - lumen microbiology.

    Google Scholar 

  3. Schwanhüusser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42. https://doi.org/10.1038/nature10098.

    Article  CAS  Google Scholar 

  4. Szabo DT. Transcriptomic biomarkers in safety and risk assessment of chemicals. In: Biomarkers in toxicology. New York, NY: Academic Press; 2014. p. 1033–8.

    Chapter  Google Scholar 

  5. Wang D, Bodovitz S. Single cell analysis: the new frontier in “omics”. Trends Biotechnol. 2010;28:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daviss B. Growing pains for metabolomics. Scientist. 2005;19:25–8.

    Google Scholar 

  7. Zenobi R. Single-cell metabolomics: analytical and biological perspectives. Science. 2013;342:1243259. https://doi.org/10.1126/science.1243259.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19:1853–61. https://doi.org/10.1002/elps.1150191103.

    Article  CAS  PubMed  Google Scholar 

  9. Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999;17:121–7.

    Article  CAS  PubMed  Google Scholar 

  10. Wu AR, Wang J, Streets AM, Huang Y. Single-cell transcriptional analysis. Annu Rev Anal Chem. 2017;10:439–62. https://doi.org/10.1146/annurev-anchem-061516-045228.

    Article  CAS  Google Scholar 

  11. Kalisky T, Quake SR. Single-cell genomics. Nat Methods. 2011;8:311.

    Article  CAS  PubMed  Google Scholar 

  12. Passarelli MK, Ewing AG. Single-cell imaging mass spectrometry. Curr Opin Chem Biol. 2013;17:854–9. https://doi.org/10.1016/j.cbpa.2013.07.017.

    Article  CAS  PubMed  Google Scholar 

  13. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV. Profiling metabolites and peptides in single cells. Nat Methods. 2011;8:S20–9. https://doi.org/10.1038/nmeth.1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mathew AK, Padmanaban VC. Metabolomics: the apogee of the omics trilogy. Int J Pharm Pharm Sci. 2013;5:45–8.

    Google Scholar 

  15. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patti GJ, Yanes O, Shriver LP, et al. Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nat Chem Biol. 2012;8:232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu S, Luo S, Evgrafov O, et al. Single-neuron RNA-Seq: technical feasibility and reproducibility. Front Genet. 2012;3:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu S, Luo S, Evgrafov O, et al. Erratum: single-neuron RNA-Seq: technical feasibility and reproducibility. Front Genet. 2013;4:23.

    Article  PubMed Central  Google Scholar 

  19. Wang J, Fan HCC, Behr B, Quake SRR. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell. 2012;150:402–12. https://doi.org/10.1016/j.cell.2012.06.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hou Y, Fan W, Yan L, et al. Genome analyses of single human oocytes. Cell. 2013;155:1492–506.

    Article  CAS  PubMed  Google Scholar 

  21. Tang F, Barbacioru C, Bao S, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2010;6:468–78. https://doi.org/10.1016/j.stem.2010.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue Z, Huang K, Cai C, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593–7. https://doi.org/10.1038/nature12364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131–9. https://doi.org/10.1038/nsmb.2660.

    Article  CAS  PubMed  Google Scholar 

  24. Guo H, Zhu P, Wu X, et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23:2126–35. https://doi.org/10.1101/gr.161679.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim J, Eberwine J. RNA: state memory and mediator of cellular phenotype. Trends Cell Biol. 2010;20:311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eberwine J, Sul JY, Bartfai T, Kim J. The promise of single-cell sequencing. Nat Methods. 2014;11:25–7. https://doi.org/10.1038/nmeth.2769.

    Article  CAS  PubMed  Google Scholar 

  27. Macaulay IC, Ponting CP, Voet T. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 2017;33:155–68. https://doi.org/10.1016/j.tig.2016.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yilmaz S, Singh AK. Single cell genome sequencing. Curr Opin Biotechnol. 2012;23:437.

    Article  CAS  PubMed  Google Scholar 

  29. Gross A, Schoendube J, Zimmermann S, et al. Technologies for single-cell isolation. Int J Mol Sci. 2015;16:16897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheong R, Wang CJ, Levchenko A. Using a microfluidic device for high-content analysis of cell signaling. Sci Signal. 2009;2:pl2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Binnig G, Rohrer H. Helvetica Phys. Acta 55, 726 (1982). Sci Am. 1985;253:50.

    Article  Google Scholar 

  32. Garcia-Parajo MF. Optical antennas focus in on biology. Nat Photonics. 2008;2:201–3. https://doi.org/10.1038/nphoton.2008.37.

    Article  CAS  Google Scholar 

  33. Amrania H, Drummond L, Coombes RC, et al. New IR imaging modalities for cancer detection and for intra-cell chemical mapping with a sub-diffraction mid-IR s-SNOM. Faraday Discuss. 2016;187:539. https://doi.org/10.1039/c5fd00150a.

    Article  CAS  PubMed  Google Scholar 

  34. Dereux A, Vigneron JP, Lambin P, Lucas AA. Theory of near-field optics with applications to SNOM and optical binding. Phys B Phys Condens Matter. 1991;175:65–7. https://doi.org/10.1016/0921-4526(91)90692-8.

    Article  Google Scholar 

  35. Dürig U, Pohl DW, Rohner F. Near-field optical-scanning microscopy. J Appl Phys. 1986;59:3318. https://doi.org/10.1063/1.336848.

    Article  Google Scholar 

  36. Abeyasinghe N, Kumar S, Sun K, et al. Enhanced emission from single isolated gold quantum dots investigated using two-photon-excited fluorescence near-field scanning optical microscopy. J Am Chem Soc. 2016;138:16299–307. https://doi.org/10.1021/jacs.6b07737.

    Article  CAS  PubMed  Google Scholar 

  37. Futamata M, Bruckbauer A. ATR-SNOM-Raman spectroscopy. Chem Phys Lett. 2001;341:425–30. https://doi.org/10.1016/S0009-2614(01)00545-0.

    Article  CAS  Google Scholar 

  38. Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11:664–87. https://doi.org/10.1038/nprot.2016.036.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Z, Lavis LD, Betzig E. Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell. 2015;58:644. https://doi.org/10.1016/j.molcel.2015.02.033.

    Article  CAS  PubMed  Google Scholar 

  40. Liang Z, Yin Z, Yang H, et al. Nanoscale surface analysis that combines scanning probe microscopy and mass spectrometry: a critical review. Trends Anal Chem. 2016;75:24–34. https://doi.org/10.1016/j.trac.2015.07.009.

    Article  CAS  Google Scholar 

  41. Huth F, Govyadinov A, Amarie S, et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012;12:3973. https://doi.org/10.1021/nl301159v.

    Article  CAS  PubMed  Google Scholar 

  42. Albella P, De La Osa RA, Moreno F, Maier SA. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photon. 2014;1:524. https://doi.org/10.1021/ph500060s.

    Article  CAS  Google Scholar 

  43. Della Picca F, Berte R, Rahmani M, et al. Tailored hypersound generation in single plasmonic nanoantennas. Nano Lett. 2016;16:1428. https://doi.org/10.1021/acs.nanolett.5b04991.

    Article  CAS  PubMed  Google Scholar 

  44. Regmi R, Winkler PM, Flauraud V, et al. Planar optical nanoantennas resolve cholesterol-dependent nanoscale heterogeneities in the plasma membrane of living cells. Nano Lett. 2017;17:6295. https://doi.org/10.1021/acs.nanolett.7b02973.

    Article  CAS  PubMed  Google Scholar 

  45. Drude P. Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Ann Phys. 1900;3:369. https://doi.org/10.1002/andp.19003081102.

    Article  CAS  Google Scholar 

  46. Sommerfeld A, Bethe H. Elektronentheorie der Metalle. In: Aufbau Der Zusammenhängenden Materie. New York, NY: Springer; 1933.

    Google Scholar 

  47. Sommerfeld A. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik - I. Teil: Allgemeines. Zeitschrift für Physik. 1928;47:1–32. https://doi.org/10.1007/BF01391052.

    Article  CAS  Google Scholar 

  48. Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev. 2011;111:3888.

    Article  CAS  PubMed  Google Scholar 

  49. Wang AX, Kong X. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced raman scattering. Materials (Basel). 2015;8:3024.

    Article  CAS  Google Scholar 

  50. Pellegrotti JV, Acuna GP, Puchkova A, et al. Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids. Nano Lett. 2014;14:2831. https://doi.org/10.1021/nl500841n.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan H, Khatua S, Zijlstra P, et al. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angew Chem Int Ed. 2013;52:1217. https://doi.org/10.1002/anie.201208125.

    Article  CAS  Google Scholar 

  52. Khatua S, Paulo PMR, Yuan H, et al. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano. 2014;8:4440. https://doi.org/10.1021/nn406434y.

    Article  CAS  PubMed  Google Scholar 

  53. Huth F, Chuvilin A, Schnell M, et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 2013;13:1065. https://doi.org/10.1021/nl304289g.

    Article  CAS  PubMed  Google Scholar 

  54. Puchkova A, Vietz C, Pibiri E, et al. DNA origami nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 μm. Nano Lett. 2015;15:8354–9.

    Article  CAS  PubMed  Google Scholar 

  55. Dulkeith E, Ringler M, Klar TA, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. 2005;5:585. https://doi.org/10.1021/nl0480969.

    Article  CAS  PubMed  Google Scholar 

  56. Etin AE, Yanik AA, Yilmaz C, et al. Monopole antenna arrays for optical trapping, spectroscopy, and sensing. Appl Phys Lett. 2011;98:98–101. https://doi.org/10.1063/1.3559620.

    Article  CAS  Google Scholar 

  57. Jung I, Kim M, Kwak M, et al. Surface plasmon resonance extension through two-block metal-conducting polymer nanorods. Nat Commun. 2018;9:1010. https://doi.org/10.1038/s41467-018-03453-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Michieli N, Pilot R, Russo V, et al. Oxidation effects on the SERS response of silver nanoprism arrays. RSC Adv. 2017;7:369. https://doi.org/10.1039/c6ra26307k.

    Article  CAS  Google Scholar 

  59. Kim M, Ko SM, Kim JM, et al. Dealloyed intra-nanogap particles with highly robust, quantifiable surface-enhanced Raman scattering signals for biosensing and bioimaging applications. ACS Cent Sci. 2018;4:277. https://doi.org/10.1021/acscentsci.7b00584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jin Q, Li M, Polat B, et al. Mechanical trap surface-enhanced raman spectroscopy for three-dimensional surface molecular imaging of single live cells. Angew Chem Int Ed. 2017;56:3822. https://doi.org/10.1002/anie.201700695.

    Article  CAS  Google Scholar 

  61. Nair AK, Bhavitha KB, Perumbilavil S, et al. Multifunctional nitrogen sulfur co-doped reduced graphene oxide – Ag nano hybrids (sphere, cube and wire) for nonlinear optical and SERS applications. Carbon. 2018;132:380. https://doi.org/10.1016/j.carbon.2018.02.068.

    Article  CAS  Google Scholar 

  62. Dill TJ, Rozin MJ, Brown ER, et al. Investigating the effect of Ag nanocube polydispersity on gap-mode SERS enhancement factors. Analyst. 2016;141:3916. https://doi.org/10.1039/c6an00212a.

    Article  CAS  PubMed  Google Scholar 

  63. Li Y, Ye Y, Fan Y, et al. Silver nanoprism-loaded eggshell membrane: a facile platform for in situ SERS monitoring of catalytic reactions. Crystals. 2017;7:45.

    Article  CAS  Google Scholar 

  64. Pilipavicius J, Kaleinikaite R, Pucetaite M, et al. Controllable formation of high density SERS-active silver nanoprism layers on hybrid silica-APTES coatings. Appl Surf Sci. 2016;377:134. https://doi.org/10.1016/j.apsusc.2016.03.169.

    Article  CAS  Google Scholar 

  65. Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y. Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc. 2012;43:817.

    Article  CAS  Google Scholar 

  66. Altunbek M, Kuku G, Culha M. Gold nanoparticles in single-cell analysis for surface enhanced Raman scattering. Molecules. 2016;21(12):E1617.

    Article  PubMed  CAS  Google Scholar 

  67. Cowcher DP, Deckert-Gaudig T, Brewster VL, et al. Detection of protein glycosylation using tip-enhanced Raman scattering. Anal Chem. 2016;88:2105–12. https://doi.org/10.1021/acs.analchem.5b03535.

    Article  CAS  PubMed  Google Scholar 

  68. Xiao L, Wang H, Schultz ZD. Selective detection of RGD-integrin binding in cancer cells using tip enhanced raman scattering microscopy. Anal Chem. 2016;88:6547. https://doi.org/10.1021/acs.analchem.6b01344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Balanis CA. Modern antenna handbook. New York, NY: Wiley; 2007.

    Google Scholar 

  70. Pozar DM. Microwave engineering. New York, NY: Wiley; 2012.

    Google Scholar 

  71. Bethe HA. Theory of diffraction by small holes. Phys Rev. 1944;66:163–82. https://doi.org/10.1103/PhysRev.66.163.

    Article  Google Scholar 

  72. Bouwkamp CJ. Diffraction theory. Rep Prog Phys. 1954;17:35. https://doi.org/10.1088/0034-4885/17/1/302.

    Article  Google Scholar 

  73. Levine H, Schwinger J. On the transmission coefficient of a circular aperture. Phys Rev. 1949;75:1608.

    Article  Google Scholar 

  74. Drezet A, Woehl JC, Huant S. Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy. Phys Rev E Stat Phys Plasm Fluid Relat Interdiscip Top. 2002;65:046611. https://doi.org/10.1103/PhysRevE.65.046611.

    Article  CAS  Google Scholar 

  75. Crouch GM, Han D, Bohn PW. Zero-mode waveguide nanophotonic structures for single molecule characterization. J Phys D Appl Phys. 2018;51:193001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Napoli M, Eijkel JCT, Pennathur S. Nanofluidic technology for biomolecule applications: a critical review. Lab Chip. 2010;10:957.

    Article  CAS  PubMed  Google Scholar 

  77. Larkin J, Henley RY, Jadhav V, et al. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat Nanotechnol. 2017;12:1169–75. https://doi.org/10.1038/nnano.2017.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Magde D, Elson E, Webb WW. Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy. Phys Rev Lett. 1972;29:705. https://doi.org/10.1103/PhysRevLett.29.705.

    Article  CAS  Google Scholar 

  79. Samiee KT, Foquet M, Guo L, et al. λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. Biophys J. 2005;88:2145. https://doi.org/10.1529/biophysj.104.052795.

    Article  CAS  PubMed  Google Scholar 

  80. Samiee KT, Moran-Mirabal JM, Cheung YK, Craighead HG. Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys J. 2006;90:3288. https://doi.org/10.1529/biophysj.105.072819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Richards CI, Luong K, Srinivasan R, et al. Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. Nano Lett. 2012;12:3690–4. https://doi.org/10.1021/nl301480h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miyake T, Tanii T, Sonobe H, et al. Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein-protein interaction. Anal Chem. 2008;80:6018. https://doi.org/10.1021/ac800726g.

    Article  CAS  PubMed  Google Scholar 

  83. Zaino LP, Grismer DA, Han D, et al. Single occupancy spectroelectrochemistry of freely diffusing flavin mononucleotide in zero-dimensional nanophotonic structures. Faraday Discuss. 2015;8:535. https://doi.org/10.1039/c5fd00072f.

    Article  Google Scholar 

  84. Gooding JJ, Gaus K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew Chem Int Ed. 2016;55:11354–66. https://doi.org/10.1002/anie.201600495.

    Article  CAS  Google Scholar 

  85. Murphy TW, Zhang Q, Naler LB, et al. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst. 2018;143:60–80.

    Article  CAS  Google Scholar 

  86. Song C, Tan SH. A perspective on the rise of optofluidics and the future. Micromachines. 2017;8:152.

    Article  PubMed Central  Google Scholar 

  87. Ma Z, Teo AJT, Tan SH, et al. Self-aligned interdigitated transducers for acoustofluidics. Micromachines. 2016;7:216. https://doi.org/10.3390/mi7120216.

    Article  PubMed Central  Google Scholar 

  88. TAG Optics Inc. TAG lens product family: the world’s fastest focusing lenses.

    Google Scholar 

  89. Blue-Scientific Optofluidics. http://www.blue-scientific.com/biological-afm-microscopy-jpk-instruments-bruker/. Accessed 1 Nov 2018.

  90. Bedoya AC, Monat C, Domachuk P, et al. Measuring the dispersive properties of liquids using a microinterferometer. Appl Opt. 2011;50:2408. https://doi.org/10.1364/AO.50.002408.

    Article  CAS  PubMed  Google Scholar 

  91. Testa G, Persichetti G, Sarro PM, Bernini R. A hybrid silicon-PDMS optofluidic platform for sensing applications. Biomed Opt Express. 2014;5:417. https://doi.org/10.1364/BOE.5.000417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lapsley MI, Chiang IK, Zheng YB, et al. A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection. Lab Chip. 2011;11:1795. https://doi.org/10.1039/c0lc00707b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo B, Lei C, Kobayashi H, et al. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy. Cytometry A. 2017;91:494. https://doi.org/10.1002/cyto.a.23084.

    Article  CAS  PubMed  Google Scholar 

  94. Lau AKS, Shum HC, Wong KKY, et al. Optofluidic time-stretch imaging – an emerging tool for high-throughput imaging flow cytometry. Lab Chip. 2016;16:1743. https://doi.org/10.1039/C5LC01458A.

    Article  CAS  PubMed  Google Scholar 

  95. Müller P, Schürmann M, Chan CJ, Guck J. Single-cell diffraction tomography with optofluidic rotation about a tilted axis. SPIE Proc. 2015;9548:95480U.

    Article  Google Scholar 

  96. Lee KS, Lee KH, Kim SB, et al. Dynamic manipulation of particles via transformative optofluidic waveguides. Sci Rep. 2015;5:15170. https://doi.org/10.1038/srep15170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee KH, Lee KS, Jung JH, et al. Optical mobility of blood cells for label-free cell separation applications. Appl Phys Lett. 2013;102:141911. https://doi.org/10.1063/1.4801951.

    Article  CAS  Google Scholar 

  98. Schmidt H, Hawkins AR. Single-virus analysis through chip-based optical detection. Bioanalysis. 2016;8:867–70. https://doi.org/10.4155/bio-2016-0004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cai H, Parks JW, Wall TA, et al. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci Rep. 2015;5:14494. https://doi.org/10.1038/srep14494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pollnau M, Hammer M, Dongre C, Hoekstra HJWM. DNA separation and fluorescent detection in an optofluidic chip with sub-base-pair resolution. SPIE Proc. 2015;9320:93200J.

    Article  Google Scholar 

  101. Knob R, Hanson RL, Tateoka OB, et al. Sequence-specific sepsis-related DNA capture and fluorescent labeling in monoliths prepared by single-step photopolymerization in microfluidic devices. J Chromatogr A. 2018;1562:12. https://doi.org/10.1016/j.chroma.2018.05.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bertucci A, Manicardi A, Candiani A, et al. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens Bioelectron. 2015;63:248. https://doi.org/10.1016/j.bios.2014.07.047.

    Article  CAS  PubMed  Google Scholar 

  103. Petras D, Jarmusch AK, Dorrestein PC. From single cells to our planet—recent advances in using mass spectrometry for spatially resolved metabolomics. Curr Opin Chem Biol. 2017;36:24–31. https://doi.org/10.1016/j.cbpa.2016.12.018.

    Article  CAS  PubMed  Google Scholar 

  104. Wikimedia Commons, Fyson D. Mass spectrometer schematic. 2008. https://commons.wikimedia.org/wiki/File:Mass_Spectrometer_Schematic.svg. Accessed 24 Jul 2018.

  105. Mukhopadhyay SM. Sample preparation for microscopic and spectroscopic characterization of solid surfaces and films. In: Sample preparation techniques in analytical chemistry. Hoboken, NJ: John Wiley & Sons, Inc.; 2003.

    Google Scholar 

  106. Caprioli RM, Suter MJF. Continuous-flow fast atom bombardment: recent advances and applications. Int J Mass Spectrom Ion Process. 1992;118–119:449–76. https://doi.org/10.1016/0168-1176(92)85072-8.

    Article  Google Scholar 

  107. Kralj B, Kramer V, Vrščaj V. Fast atom bombardment of molecules in the gaseous state. Int J Mass Spectrom Ion Phys. 1983;46:399–402. https://doi.org/10.1016/0020-7381(83)80136-3.

    Article  CAS  Google Scholar 

  108. Takayama M. Gas-phase fast-atom bombardment mass spectrometry. Int J Mass Spectrom Ion Process. 1996;152:1–20. https://doi.org/10.1016/0168-1176(95)04298-9.

    Article  CAS  Google Scholar 

  109. Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64–71. https://doi.org/10.1126/science.2675315.

    Article  CAS  PubMed  Google Scholar 

  110. Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3. https://doi.org/10.1002/rcm.1290020802.

    Article  CAS  Google Scholar 

  111. Vertes A, Irinyi G, Gijbels R. Hydrodynamic model of matrix-assisted laser desorption mass spectrometry. Anal Chem. 1993;65:2389–93. https://doi.org/10.1021/ac00065a036.

    Article  CAS  Google Scholar 

  112. Wu XW, Sadeghi M, Vertes A. Molecular dynamics of matrix-assisted laser desorption of leucine enkephalin guest molecules from nicotinic acid host crystal. J Phys Chem B. 1998;102:4770–8. https://doi.org/10.1021/jp9806361.

    Article  CAS  Google Scholar 

  113. Sadeghi M, Wu X, Vertes A. Conformation changes, complexation, and phase transition in matrix-assisted laser desorption. J Phys Chem B. 2001;105:2578–87. https://doi.org/10.1021/jp0032715.

    Article  CAS  Google Scholar 

  114. Stolee JA, Walker BN, Zorba V, et al. Laser–nanostructure interactions for ion production. Phys Chem Chem Phys. 2012;14:8453. https://doi.org/10.1039/c2cp00038e.

    Article  CAS  PubMed  Google Scholar 

  115. Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57:2935–9. https://doi.org/10.1021/ac00291a042.

    Article  CAS  Google Scholar 

  116. Benninghoven A, Rudenauer FG, Werner HW. Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends. New York, NY: John Wiley & Sons; 1987.

    Google Scholar 

  117. Perkel JM. LIFE SCIENCE TECHNOLOGIES: mass spec imaging: from bench to bedside. Science. 2013;340:1119–21. https://doi.org/10.1126/science.opms.p1300076.

    Article  Google Scholar 

  118. McEwen CN, McKay RG. A combination atmospheric pressure LC/MS:GC/MS ion source: advantages of dual AP-LC/MS:GC/MS instrumentation. J Am Soc Mass Spectrom. 2005;16:1730–8. https://doi.org/10.1016/j.jasms.2005.07.005.

    Article  CAS  PubMed  Google Scholar 

  119. McEwen CN, McKay RG, Larsen BS. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal Chem. 2005;77:7826–31. https://doi.org/10.1021/ac051470k.

    Article  CAS  PubMed  Google Scholar 

  120. Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev. 2003;103:441–52. https://doi.org/10.1021/cr0103773.

    Article  CAS  PubMed  Google Scholar 

  121. Knochenmuss R. A quantitative model of ultraviolet matrix-assisted laser desorption/ionization including analyte ion generation. Anal Chem. 2003;75:2199–207. https://doi.org/10.1021/ac034032r.

    Article  CAS  PubMed  Google Scholar 

  122. Laiko VV, Baldwin MA, Burlingame AL. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72:652–7. https://doi.org/10.1021/ac990998k.

    Article  CAS  PubMed  Google Scholar 

  123. Cho Y-T, Su H, Wu W-J, et al. Biomarker characterization by MALDI–TOF/MS. In: Advances in clinical chemistry. Amsterdam: Elsevier; 2015. p. 209–54.

    Google Scholar 

  124. Dale MJ, Knochenmuss R, Zenobi R. Graphite/liquid mixed matrices for laser desorption/ionization mass spectrometry. Anal Chem. 1996;68:3321–9. https://doi.org/10.1021/ac960558i.

    Article  CAS  PubMed  Google Scholar 

  125. Vertes A. Soft laser desorption ionization - Maldi, dios and nanostructures. Springer Ser Opt Sci. 2006;129:505–28. https://doi.org/10.1007/978-0-387-30453-3_20.

    Article  Google Scholar 

  126. Colaianni L, Kung SC, Taggart DK, et al. Laser desorption ionization-mass spectrometry detection of amino acids and peptides promoted by gold nanowires. Sens Lett. 2010;8:539–44. https://doi.org/10.1166/sl.2010.1308.

    Article  CAS  Google Scholar 

  127. Nayak R, Knapp DR. Matrix-free LDI mass spectrometry platform using patterned nanostructured gold thin film. Anal Chem. 2010;82:7772–8. https://doi.org/10.1021/ac1017277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pyayt AL, Wiley B, Xia Y, et al. Integration of photonic and silver nanowire plasmonic waveguides. Nat Nanotechnol. 2008;3:660–5. https://doi.org/10.1038/nnano.2008.281.

    Article  CAS  PubMed  Google Scholar 

  129. Seino T, Sato H, Yamamoto A, et al. Matrix-free laser desorption/ionization-mass spectrometry using self-assembled germanium nanodots. Anal Chem. 2007;79:4827–32. https://doi.org/10.1021/ac062216a.

    Article  CAS  PubMed  Google Scholar 

  130. Sato H, Nemoto A, Yamamoto A, Tao H. Surface cleaning of germanium nanodot ionization substrate for surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:603–10.

    Article  CAS  PubMed  Google Scholar 

  131. Kawasaki H, Yonezawa T, Watanabe T, Arakawa R. Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules. J Phys Chem C. 2007;111:16278–83.

    Article  CAS  Google Scholar 

  132. Cha S, Yeung ES. Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MS n of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem. 2007;79:2373–85.

    Article  CAS  PubMed  Google Scholar 

  133. Kang M, Pyun J, Lee J, et al. Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun Mass Spectrom. 2005;19:3166–70.

    Article  CAS  Google Scholar 

  134. Go EP, Apon JV, Luo G, et al. Desorption/ionization on silicon nanowires. Anal Chem. 2005;77:1641–6.

    Article  CAS  PubMed  Google Scholar 

  135. Chen Y, Vertes A. Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Nature. 2006;78:5835–44.

    CAS  Google Scholar 

  136. Northen TR, Yanes O, Northen MT, et al. Clathrate nanostructures for mass spectrometry. Nature. 2007;449:1033–6. https://doi.org/10.1038/nature06195.

    Article  CAS  PubMed  Google Scholar 

  137. Wei J, Buriak JM, Siuzdak G. Desorption – ionization mass spectrometryonporoussilicon. Nature. 1999;399:243–6. https://doi.org/10.1038/20400.

    Article  CAS  PubMed  Google Scholar 

  138. Walker BN, Stolee JA, Pickel DL, et al. Tailored silicon nanopost arrays for resonant nanophotonic ion production. J Phys Chem C. 2010;114:4835–40. https://doi.org/10.1021/jp9110103.

    Article  CAS  Google Scholar 

  139. Walker BN, Stolee JA, Vertes A. Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry. Anal Chem. 2012;84:7756–62. https://doi.org/10.1021/ac301238k.

    Article  CAS  PubMed  Google Scholar 

  140. Korte AR, Stopka SA, Morris N, et al. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays. Anal Chem. 2016;88:8989–96. https://doi.org/10.1021/acs.analchem.6b01186.

    Article  CAS  PubMed  Google Scholar 

  141. Stopka SA, Holmes XA, Korte AR, et al. Trace analysis and reaction monitoring by nanophotonic ionization mass spectrometry from elevated bow-tie and silicon nanopost arrays. Adv Funct Mater. 2018;28:1801730. https://doi.org/10.1002/adfm.201801730.

    Article  CAS  Google Scholar 

  142. Wang Y, Ta VD, Gao Y, et al. Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption. Adv Mater. 2014;26:2954. https://doi.org/10.1002/adma.201305125.

    Article  CAS  PubMed  Google Scholar 

  143. Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater. 2015;14:636. https://doi.org/10.1038/nmat4271.

    Article  CAS  PubMed  Google Scholar 

  144. Huang MH, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science. 2001;292:1897. https://doi.org/10.1126/science.1060367.

    Article  CAS  PubMed  Google Scholar 

  145. Galanzha EI, Weingold R, Nedosekin DA, et al. Spaser as a biological probe. Nat Commun. 2017;8:15528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li L, Ge J, Wu H, et al. Organelle-specific detection of phosphatase activities with two-photon fluorogenic probes in cells and tissues. J Am Chem Soc. 2012;134:12157. https://doi.org/10.1021/ja3036256.

    Article  CAS  PubMed  Google Scholar 

  147. Huang C, Wang K, Yang Z, et al. Up-conversion perovskite nanolaser with single mode and low threshold. J Phys Chem C. 2017;121:10071. https://doi.org/10.1021/acs.jpcc.7b00875.

    Article  CAS  Google Scholar 

  148. Li M, Zhi M, Zhu H, et al. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. Nat Commun. 2015;6:8513. https://doi.org/10.1038/ncomms9513.

    Article  CAS  PubMed  Google Scholar 

  149. Baba T. Biosensing using photonic crystal nanolasers. MRS Commun. 2015;5:555. https://doi.org/10.1557/mrc.2015.73.

    Article  CAS  Google Scholar 

  150. Kita S, Hachuda S, Otsuka S, et al. Super-sensitivity in label-free protein sensing using a nanoslot nanolaser. Opt Express. 2011;19:17683. https://doi.org/10.1364/OE.19.017683.

    Article  CAS  PubMed  Google Scholar 

  151. Alix-Panabières C, Pantel K. Biological labels: here comes the spaser. Nat Mater. 2017;16:790.

    Article  PubMed  CAS  Google Scholar 

  152. Solowan H-P, Kryschi C. Facile design of a plasmonic nanolaser. Condens Matter. 2017;2:8.

    Article  CAS  Google Scholar 

  153. Lane LA, Smith AM, Lian T, Nie S. Compact and blinking-suppressed quantum dots for single-particle tracking in live cells. J Phys Chem B. 2014;118:14140. https://doi.org/10.1021/jp5064325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sabaeian M, Khaledi-Nasab A. Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer. Appl Opt. 2012;51:4176–85. https://doi.org/10.1364/AO.51.004176.

    Article  CAS  PubMed  Google Scholar 

  155. Khaledi-Nasab A, Sabaeian M, Sahrai M, Fallahi V. Kerr nonlinearity due to intersubband transitions in a three-level InAs/GaAs quantum dot: the impact of a wetting layer on dispersion curves. J Opt. 2014;16:55004.

    Article  CAS  Google Scholar 

  156. Walling MA, Novak JA, Shepard JRE. Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 2009;10:441–91. https://doi.org/10.3390/ijms10020441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pelley JL, Daar AS, Saner MA. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol Sci. 2009;112:276–96. https://doi.org/10.1093/toxsci/kfp188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Choi HS, Liu W, Misra P, et al. Renal clearance of nanoparticles. Nat Biotechnol. 2007;25:1165–70. https://doi.org/10.1038/nbt1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969. https://doi.org/10.1038/nbt994.

    Article  CAS  PubMed  Google Scholar 

  160. Yang Y, Jing L, Yu X, et al. Coating aqueous quantum dots with silica via reverse microemulsion method: toward size-controllable and robust fluorescent nanoparticles. Chem Mater. 2007;19:4123. https://doi.org/10.1021/cm070798m.

    Article  CAS  Google Scholar 

  161. Thoniyot P, Tan MJ, Karim AA, et al. Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci. 2015;2:1.

    Article  CAS  Google Scholar 

  162. Ma Y, Wang M, Li W, et al. Live cell imaging of single genomic loci with quantum dot-labeled TALEs. Nat Commun. 2017;8:15318. https://doi.org/10.1038/ncomms15318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Qiu Y, Zhou B, Yang X, et al. Novel single-cell analysis platform based on a solid-state zinc-coadsorbed carbon quantum dots electrochemiluminescence probe for the evaluation of CD44 expression on breast cancer cells. ACS Appl Mater Interfaces. 2017;9:16848. https://doi.org/10.1021/acsami.7b02793.

    Article  CAS  PubMed  Google Scholar 

  164. Katrukha EA, Mikhaylova M, Van Brakel HX, et al. Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nat Commun. 2017;8:14772. https://doi.org/10.1038/ncomms14772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fang L, Ohfuji H, Irifune T. A novel technique for the synthesis of nanodiamond powder. J Nanomater. 2013;2013:41. https://doi.org/10.1155/2013/201845.

    Article  CAS  Google Scholar 

  166. Holt KB. Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos Trans R Soc A Math Phys Eng Sci. 2007;365:2845. https://doi.org/10.1098/rsta.2007.0005.

    Article  CAS  Google Scholar 

  167. Hsiao WWW, Hui YY, Tsai PC, Chang HC. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res. 2016;49:400.

    Article  CAS  PubMed  Google Scholar 

  168. Lin H-H, Lee H-W, Lin R-J, et al. Tracking and finding slow-proliferating/quiescent cancer stem cells with fluorescent nanodiamonds. Small. 2015;11:4394–402. https://doi.org/10.1002/smll.201500878.

    Article  CAS  PubMed  Google Scholar 

  169. Liu KK, Wang CC, Cheng CL, Chao JI. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials. 2009;30:4249. https://doi.org/10.1016/j.biomaterials.2009.04.056.

    Article  CAS  PubMed  Google Scholar 

  170. Hui YY, Su LJ, Chen OY, et al. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci Rep. 2014;4:5574. https://doi.org/10.1038/srep05574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisar, M.S., Zhao, X. (2021). Nanophotonic Techniques for Single-Cell Analysis. In: Zhao, X., Lu, M. (eds) Nanophotonics in Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6137-5_4

Download citation

Publish with us

Policies and ethics