Skip to main content

LDL and HDL Oxidative Modification and Atherosclerosis

  • Chapter
  • First Online:
Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1276))

Abstract

Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) are two kinds of common lipoproteins in plasma. The level of LDL cholesterol in plasma is positively correlated with atherosclerosis (AS), which is related to the complex macromolecular components, especially the easy oxygenation of protein and lipid components. However, the plasma HDL cholesterol level is negatively correlated with AS, but the results of recent studies show that the oxidative modified HDL in pathological state will not reduce and may aggravate the occurrence and development of AS. Therefore, the oxidative modification of lipoproteins is closely related to vascular homeostasis, which has become a hot research area for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prassl R, Laggner P (2009) Molecular structure of low density lipoprotein: current status and future challenges. Eur Biophys J 38:145–158

    Article  CAS  PubMed  Google Scholar 

  2. Obama T, Kato R, Masuda Y, Takahashi K, Aiuchi T, Itabe H (2007) Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics 7:2132–2141

    Article  CAS  PubMed  Google Scholar 

  3. Singh U, Devaraj S, Jialal I (2005) Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr 25:151–174

    Article  CAS  PubMed  Google Scholar 

  4. Aviram M (1993) Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 98:1–9

    Article  CAS  PubMed  Google Scholar 

  5. Salvayre R, Auge N, Benoist H, Negre-Salvayre A (2002) Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta 1585:213–221

    Article  CAS  PubMed  Google Scholar 

  6. Back M, Yurdagul A Jr, Tabas I, Oorni K, Kovanen PT (2019) Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 16:389–406

    PubMed  PubMed Central  Google Scholar 

  7. Negre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R (2017) Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med 111:127–139

    Article  CAS  PubMed  Google Scholar 

  8. Cox DA, Cohen ML (1996) Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis. Pharmacol Rev 48:3–19

    CAS  PubMed  Google Scholar 

  9. Yoshida H, Kisugi R (2010) Mechanisms of LDL oxidation. Clin Chim Acta 411:1875–1882

    Article  CAS  PubMed  Google Scholar 

  10. Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13:341–390

    Article  CAS  PubMed  Google Scholar 

  11. Jialal I (1998) Evolving lipoprotein risk factors: lipoprotein(a) and oxidized low-density lipoprotein. Clin Chem 44:1827–1832

    Article  CAS  PubMed  Google Scholar 

  12. Choi SH, Sviridov D, Miller YI (2017) Oxidized cholesteryl esters and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 1862:393–397

    Article  CAS  PubMed  Google Scholar 

  13. Najafi M, Roustazadeh A, Alipoor B (2011) Ox-LDL particles: modified components, cellular uptake, biological roles and clinical assessments. Cardiovasc Hematol Disord Drug Targets 11:119–128

    Article  CAS  PubMed  Google Scholar 

  14. Levitan I, Volkov S, Subbaiah PV (2010) Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 13:39–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G (2017) Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 111:140–150

    Article  CAS  PubMed  Google Scholar 

  16. Yang CY, Gu ZW, Yang HX, Yang M, Gotto AM Jr, Smith CV (1997) Oxidative modifications of apoB-100 by exposure of low density lipoproteins to HOCL in vitro. Free Radic Biol Med 23:82–89

    Article  CAS  PubMed  Google Scholar 

  17. Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20:707–727

    Article  CAS  PubMed  Google Scholar 

  18. Podrez EA, Febbraio M, Sheibani N, Schmitt D, Silverstein RL, Hajjar DP, Cohen PA, Frazier WA, Hoff HF, Hazen SL (2000) Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 105:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikiforov NG, Zakiev ER, Elizova NV, Sukhorukov VN, Orekhov AN (2017) Multiple-modified low-density lipoprotein as atherogenic factor of patients’ blood: development of therapeutic approaches to reduce blood atherogenicity. Curr Pharm Des 23:932–936

    Article  CAS  PubMed  Google Scholar 

  20. Abidi M, Khan MS, Ahmad S, Kausar T, Nayeem SM, Islam S, Ali A, Alam K, Moinuddin (2018) Biophysical and biochemical studies on glycoxidatively modified human low density lipoprotein. Arch Biochem Biophys 645:87–99

    Article  CAS  PubMed  Google Scholar 

  21. Graier WF, Kostner GM (1997) Glycated low-density lipoprotein and atherogenesis: the missing link between diabetes mellitus and hypercholesterolaemia? Eur J Clin Investig 27:457–459

    Article  CAS  Google Scholar 

  22. Younis N, Sharma R, Soran H, Charlton-Menys V, Elseweidy M, Durrington PN (2008) Glycation as an atherogenic modification of LDL. Curr Opin Lipidol 19:378–384

    Article  CAS  PubMed  Google Scholar 

  23. Soran H, Durrington PN (2011) Susceptibility of LDL and its subfractions to glycation. Curr Opin Lipidol 22:254–261

    Article  CAS  PubMed  Google Scholar 

  24. Lyons TJ, Jenkins AJ (1997) Lipoprotein glycation and its metabolic consequences. Curr Opin Lipidol 8:174–180

    Article  CAS  PubMed  Google Scholar 

  25. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:III27–III32

    PubMed  Google Scholar 

  26. Huang PL (2009) eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab 20:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    Article  PubMed  Google Scholar 

  28. Ouimet M, Marcel YL (2012) Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol 32:575–581

    Article  CAS  PubMed  Google Scholar 

  29. Chistiakov DA, Bobryshev YV, Orekhov AN (2016) Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 20:17–28

    Article  CAS  PubMed  Google Scholar 

  30. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69:169–181

    Article  CAS  PubMed  Google Scholar 

  31. Yao S, Miao C, Tian H, Sang H, Yang N, Jiao P, Han J, Zong C, Qin S (2014) Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. J Biol Chem 289:4032–4042

    Article  CAS  PubMed  Google Scholar 

  32. Lee SJ, Seo KW, Yun MR, Bae SS, Lee WS, Hong KW, Kim CD (2008) 4-Hydroxynonenal enhances MMP-2 production in vascular smooth muscle cells via mitochondrial ROS-mediated activation of the Akt/NF-kappaB signaling pathways. Free Radic Biol Med 45:1487–1492

    Article  CAS  PubMed  Google Scholar 

  33. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31

    Article  CAS  PubMed  Google Scholar 

  34. Xue XH, Zhou XM, Wei W, Chen T, Su QP, Tao J, Chen LD (2016) Alisol A 24-acetate, a triterpenoid derived from alisma orientale, inhibits ox-LDL-induced phenotypic transformation and migration of rat vascular smooth muscle cells through suppressing ERK1/2 signaling. J Vasc Res 53:291–300

    Article  CAS  PubMed  Google Scholar 

  35. Camont L, Chapman MJ, Kontush A (2011) Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 17:594–603

    Article  CAS  PubMed  Google Scholar 

  36. Norata GD, Pirillo A, Catapano AL (2006) Modified HDL: biological and physiopathological consequences. Nutr Metab Cardiovasc Dis 16:371–386

    Article  CAS  PubMed  Google Scholar 

  37. Nakajima T, Origuchi N, Matsunaga T, Kawai S, Hokari S, Nakamura H, Inoue I, Katayama S, Nagata A, Komoda T (2000) Localization of oxidized HDL in atheromatous plaques and oxidized HDL binding sites on human aortic endothelial cells. Ann Clin Biochem 37(Pt 2):179–186

    Article  CAS  PubMed  Google Scholar 

  38. Nakano T, Nagata A (2003) Immunochemical detection of circulating oxidized high-density lipoprotein with antioxidized apolipoprotein A-I monoclonal antibody. J Lab Clin Med 141(6):378–384

    Google Scholar 

  39. Bergt C, Pennathur S, Fu X, Byun J, O’Brien K, McDonald TO, Singh P, Anantharamaiah GM, Chait A, Brunzell J, Geary RL, Oram JF, Heinecke JW (2004) The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A 101(35):13032–13037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shao B, Pennathur S, Heinecke JW (2012) Myeloperoxidase targets apolipoprotein A-I, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions. J Biol Chem 287:6375–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, Kinter M (2005) Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem 280(1):38–47

    Article  CAS  PubMed  Google Scholar 

  42. Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, Buffa J, Kim T, Gerstenecker GS, Gu X, Kadiyala CS, Wang Z, Culley MK, Hazen JE, Didonato AJ, Fu X, Berisha SZ, Peng D, Nguyen TT, Liang S, Chuang CC, Cho L, Plow EF, Fox PL, Gogonea V, Tang WH, Parks JS, Fisher EA, Smith JD, Hazen SL (2014) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 20(2):193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DiDonato JA, Aulak K, Huang Y, Wagner M, Gerstenecker G, Topbas C, Gogonea V, DiDonato AJ, Tang WH, Mehl RA, Fox PL, Plow EF, Smith JD, Fisher EA, Hazen SL (2014) Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem 289(15):10276–10292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He L, Qin S, Dang L, Song G, Yao S, Yang N, Li Y (2014) Psoriasis decreases the anti-oxidation and anti-inflammation properties of high-density lipoprotein. Biochim Biophys Acta 1841(12):1709–1715

    Article  CAS  PubMed  Google Scholar 

  45. Pan B, Yu B, Ren H, Willard B, Pan L, Zu L, Shen X, Ma Y, Li X, Niu C, Kong J, Kang S, Eugene Chen Y, Pennathur S, Zheng L (2013) High-density lipoprotein nitration and chlorination catalyzed by myeloperoxidase impair its effect of promoting endothelial repair. Free Radic Biol Med 60:272–281

    Article  CAS  PubMed  Google Scholar 

  46. Undurti A, Huang Y, Lupica JA, Smith JD, DiDonato JA, Hazen SL (2009) Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem 284(45):30825–30835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soumyarani VS, Jayakumari N (2014) Oxidized HDL induces cytotoxic effects: implications for atherogenic mechanism. J Biochem Mol Toxicol 28:481–489

    Article  CAS  PubMed  Google Scholar 

  49. Ru D, Zhiqing H, Lin Z, Feng W, Feng Z, Jiayou Z, Yusheng R, Min F, Chun L, Zonggui W (2015) Oxidized high-density lipoprotein accelerates atherosclerosis progression by inducing the imbalance between treg and teff in LDLR knockout mice. APMIS 123:410–421

    Article  PubMed  CAS  Google Scholar 

  50. Yao S, Tian H, Zhao L, Li J, Yang L, Yue F, Li Y, Jiao P, Yang N, Wang Y, Zhang X, Qin S (2017) Oxidized high density lipoprotein induces macrophage apoptosis via toll-like receptor 4-dependent CHOP pathway. J Lipid Res 58:164–177

    Article  CAS  PubMed  Google Scholar 

  51. Tian H, Li Y, Kang P, Wang Z, Yue F, Jiao P, Yang N, Qin S, Yao S (2019) Endoplasmic reticulum stress-dependent autophagy inhibits glycated high-density lipoprotein-induced macrophage apoptosis by inhibiting CHOP pathway. J Cell Mol Med 23(4):2954–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Assinger A, Koller F, Schmid W, Zellner M, Babeluk R, Koller E, Volf I (2010) Specific binding of hypochlorite-oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 212(1):153–160

    Article  CAS  PubMed  Google Scholar 

  53. Ren J, Jin W, Chen H (2010) oxHDL decreases the expression of CD36 on human macrophages through PPARgamma and p38 MAP kinase dependent mechanisms. Mol Cell Biochem 342(1–2):171–181

    Article  CAS  PubMed  Google Scholar 

  54. Thorne RF, Mhaidat NM, Ralston KJ, Burns GF (2007) CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett 581(6):1227–1232

    Article  CAS  PubMed  Google Scholar 

  55. Valiyaveettil M, Kar N, Ashraf MZ, Byzova TV, Febbraio M, Podrez EA (2008) Oxidized high-density lipoprotein inhibits platelet activation and aggregation via scavenger receptor BI. Blood 111(4):1962–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shao B, Tang C, Heinecke JW, Oram JF (2010) Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J Lipid Res 51:1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsuo Y, Oberbach A, Till H, Inge TH, Wabitsch M, Moss A, Jehmlich N, Volker U, Muller U, Siegfried W, Kanesawa N, Kurabayashi M, Schuler G, Linke A, Adams V (2013) Impaired HDL function in obese adolescents: impact of lifestyle intervention and bariatric surgery. Obesity (Silver Spring) 21:E687–E695

    Article  CAS  Google Scholar 

  58. Henning MF, Herlax V, Bakas L (2011) Contribution of the C-terminal end of apolipoprotein AI to neutralization of lipopolysaccharide endotoxic effect. Innate Immun 17:327–337

    Article  CAS  PubMed  Google Scholar 

  59. Brown BE, Nobecourt E, Zeng J, Jenkins AJ, Rye KA, Davies MJ (2013) Apolipoprotein A-I glycation by glucose and reactive aldehydes alters phospholipid affinity but not cholesterol export from lipid-laden macrophages. PLoS One 8:e65430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferretti G, Bacchetti T, Moroni C, Savino S, Liuzzi A, Balzola F, Bicchiega V (2005) Paraoxonase activity in high-density lipoproteins: a comparison between healthy and obese females. J Clin Endocrinol Metab 90(3):1728–1733

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen SD, Kim JR, Kim MR, Jung TS, Soka DE (2004) Copper ions and hypochlorite are mainly responsible for oxidative inactivation of paraoxon-hydrolyzing activity in human high density lipoprotein. Toxicol Lett 147(3):201–208

    Article  CAS  PubMed  Google Scholar 

  62. Qin S, Kamanna VS, Lai JH, Liu T, Ganji SH, Zhang L, Bachovchin WW, Kashyap ML (2012) Reverse D4F, an apolipoprotein-AI mimetic peptide, inhibits atherosclerosis in ApoE-null mice. J Cardiovasc Pharmacol Ther 17(3):334–343

    Article  PubMed  Google Scholar 

  63. Chahal N, Manlhiot C, Wong H, McCrindle BW (2014) Effectiveness of omega-3 polysaturated fatty acids (fish oil) supplementation for treating hypertriglyceridemia in children and adolescents. Clin Pediatr (Phila) 53(7):645–651

    Article  Google Scholar 

  64. Green PS, Vaisar T, Pennathur S, Kulstad JJ, Moore AB, Marcovina S, Brunzell J, Knopp RH, Zhao XQ, Heinecke JW (2008) Combined statin and niacin therapy remodels the high-density lipoprotein proteome. Circulation 118(12):1259–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sang H, Yao S, Zhang L, Li X, Yang N, Zhao J, Zhao L, Si Y, Zhang Y, Lv X, Xue Y, Qin S (2015) Walk-run training improves the anti-inflammation properties of high-density lipoprotein in patients with metabolic syndrome. J Clin Endocrinol Metab 100(3):870–879

    Article  CAS  PubMed  Google Scholar 

  66. Song G, Lin Q, Zhao H, Liu M, Ye F, Sun Y, Yu Y, Guo S, Jiao P, Wu Y, Ding G, Xiao Q, Qin S (2015) Hydrogen activates ATP-binding cassette transporter A1-dependent efflux ex vivo and improves high-density lipoprotein function in patients with hypercholesterolemia: a double-blinded, randomized, and placebo-controlled trial. J Clin Endocrinol Metab 100(7):2724–2273

    Article  CAS  PubMed  Google Scholar 

Further Reading

  1. Kontush A, Chapman MJ (2012) High-density lipoproteins: structure, metabolism, function and therapeutics. Wiley, New York

    Google Scholar 

  2. Zheng L, Nukuna B, Brennan ML et al (2004) Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 114(4):529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao B, Pennathur S, Heinecke JW (2012) Myeloperoxidase targets apolipoprotein ai, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions. J Biol Chem 287(9):6375–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shao B, Cavigiolio G, Brot N et al (2008) Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc Natl Acad Sci U S A 105(34):12224–12229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng DQ, Brubaker G, Wu Z et al (2008) Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler Thromb Vasc Biol 28(11):2063–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao S, Tian H, Zhao L, Li J, Yang L, Yue F, Li Y, Jiao P, Yang N, Wang Y, Zhang X, Qin S (2017) Oxidized high-density lipoprotein induces macrophage apoptosis via toll-like receptor 4-dependent CHOP pathway. J Lipid Res 58(1):164–177

    Article  CAS  PubMed  Google Scholar 

  7. Shao B, Tang C, Heinecke JW et al (2010) Oxidation of apolipoprotein AI by myeloperoxidase impairs the initial interactions with ABCAl required for signaling and cholesterol export. J Lipid Res 51(7):1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuo Y, Oberbach A, Till H et al (2013) Impaired HDL function inobese adolescents: impact of lifestyle intervention and bariatric surgery. Obesity (Silver Spring) 21(12):687–695

    Article  CAS  Google Scholar 

  9. Henning MF, Herlax V, Bakas L (2011) Contribution of the Cterminalend of apolipoprotein Al to neutralization of lipopolysaccharide endotoxic effect. Innate Immunity 17(3):327–337

    Article  CAS  PubMed  Google Scholar 

  10. Brown BE, Nobecourt E, Zeng J et al (2013) Apolipoprotein AI glycationby glucose and reactive aldehydes alters phospholipid affinity but notcholesterol export from lipidladen macrophages. PLoS One 8(5):65430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, S. (2020). LDL and HDL Oxidative Modification and Atherosclerosis. In: Jiang, XC. (eds) Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Advances in Experimental Medicine and Biology, vol 1276. Springer, Singapore. https://doi.org/10.1007/978-981-15-6082-8_10

Download citation

Publish with us

Policies and ethics