Skip to main content

Magnetically Actuated Scaffolds to Enhance Tissue Regeneration

  • Chapter
  • First Online:
Nanotechnology in Regenerative Medicine and Drug Delivery Therapy
  • 726 Accesses

Abstract

Tissue defects beyond critical sizes and organ failure are great challenges in human health care. Biomaterial scaffold-guided tissue regeneration is one important and promising way to develop more effective therapeutic strategies to meet the clinical demands by creating microenvironments mimicking natural physiological conditions from the aspects of biochemistry and biophysics. The combination of nanotechnology in the biomaterial scaffolds have opened a new field in regenerative medicine and provided more powerful tools for developing strategies to modulate biochemical and mechanical microenvironments for tissue regeneration. In this chapter, we focused on the evolution and research progress of magnetic nanoparticles-based tissue engineering scaffolds. This chapter emphasized the synergistic effects of magnetic scaffolds in combination with external magnetic fields on cells differentiation and tissue regeneration through comprehensively reviewing the applications in multiple cells and tissues including bone, cartilage, cardiac, endothelial, nerve, Schwann cells, fibroblasts and macrophages, following the introduction of biological effects exerted by magnetic fields and magnetic scaffolds separately. The combination strategy allows for providing mechanical stimulations directly and remotely controls cells behaviors and fates in vivo without invasion, and provides promising platforms for drug screening in vitro and ex vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Duan et al., Recent progress in magnetic nanoparticles: synthesis, properties, and applications. Nanotechnology 29(45), 452001 (2018)

    PubMed  Google Scholar 

  2. V.F. Cardoso et al., Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 7(5), 1700845 (2018)

    Google Scholar 

  3. A. Sobczak-Kupiec et al., Magnetic nanomaterials and sensors for biological detection. Nanomedicine 12(8), 2459–2473 (2016)

    CAS  PubMed  Google Scholar 

  4. Hai-Yan et al., Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration. Front. Mater. Sci. 8(1), 20–31 (2014)

    Google Scholar 

  5. X. Ba et al., The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films. Biomaterials 32(31), 7831–7838 (2011)

    CAS  PubMed  Google Scholar 

  6. Y. Yamamoto et al., Effects of static magnetic fields on bone formation in rat osteoblast cultures. J. Dent. Res. 82(12), 962–966 (2003)

    CAS  PubMed  Google Scholar 

  7. L. Yuge et al., Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem. Biophys. Res. Commun. 311(1), 32–38 (2003)

    CAS  PubMed  Google Scholar 

  8. A. Ozgun et al., Extremely low frequency magnetic field induces human neuronal differentiation through NMDA receptor activation. J. Neural Transm. (Vienna) 126(10), 1281–1290 (2019)

    CAS  Google Scholar 

  9. J. Yang et al., Low-frequency pulsed magnetic field improves depression-like behaviors and cognitive impairments in depressive rats mainly via modulating synaptic function. Front. Neurosci. 13, 820 (2019)

    PubMed  PubMed Central  Google Scholar 

  10. M. Maredziak et al., Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell. Dev. Biol. Anim. 51(3), 230–240 (2015)

    CAS  PubMed  Google Scholar 

  11. S. Mayer-Wagner et al., Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics 32(4), 283–290 (2011)

    CAS  PubMed  Google Scholar 

  12. S.H. Hsu, J.C. Chang, The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology 62(2), 143–155 (2010)

    PubMed  PubMed Central  Google Scholar 

  13. A. Kasten et al., Mechanical integrin stress and magnetic forces induce biological responses in mesenchymal stem cells which depend on environmental factors. J. Cell. Biochem. 111(6), 1586–1597 (2010)

    CAS  PubMed  Google Scholar 

  14. H. Wang et al., Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen I scaffold in the presence of low-frequency magnetic field. J. Mater. Sci. Mater. Med. 30(8), 89 (2019)

    PubMed  Google Scholar 

  15. A. Ho-Shui-Ling et al., Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. G. Turnbull et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2017)

    PubMed  PubMed Central  Google Scholar 

  17. N. Bock et al., A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6(3), 786–796 (2010)

    CAS  PubMed  Google Scholar 

  18. S. Panseri et al., Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS One 7(6), e38710 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Russo et al., Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 106(2), 546–554 (2018)

    CAS  PubMed  Google Scholar 

  20. Y. Wu et al., A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomed. Mater. 5(1), 15001 (2010)

    PubMed  Google Scholar 

  21. J. Dankova et al., Highly efficient mesenchymal stem cell proliferation on poly-epsilon-caprolactone nanofibers with embedded magnetic nanoparticles. Int. J. Nanomedicine 10, 7307–7317 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. R.K. Singh et al., Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLoS One 9(4), e91584 (2014)

    PubMed  PubMed Central  Google Scholar 

  23. J.J. Kim et al., Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: physicochemical, mechanical, and biological properties effective for bone regeneration. RSC Adv. 4(33), 17325 (2014)

    CAS  Google Scholar 

  24. H. Chen et al., Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells. ACS Appl. Mater. Interfaces 10(51), 44279–44289 (2018)

    CAS  PubMed  Google Scholar 

  25. Y. Zhao et al., Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf. B Biointerfaces 174, 70–79 (2019)

    CAS  PubMed  Google Scholar 

  26. A. Tampieri et al., A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22(1), 015104 (2011)

    CAS  PubMed  Google Scholar 

  27. S. Hu et al., Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. J. Tissue Eng. Regen. Med. 12(4), e2085–e2098 (2018)

    CAS  PubMed  Google Scholar 

  28. J.W. Lu et al., Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine 14(3), 811–822 (2018)

    CAS  PubMed  Google Scholar 

  29. A. Bigham et al., Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Korean J. Couns. Psychother. 99, 83–95 (2019)

    CAS  Google Scholar 

  30. Y. Wei et al., Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomed. Mater. 6(5), 055008 (2011)

    PubMed  Google Scholar 

  31. K. Lai et al., Superparamagnetic nano-composite scaffolds for promoting bone cell proliferation and defect reparation without a magnetic field. RSC Adv. 2(33), 13007–13017 (2012)

    CAS  Google Scholar 

  32. H.M. Yun et al., Magnetic nanocomposite scaffold-induced stimulation of migration and odontogenesis of human dental pulp cells through integrin signaling pathways. PLoS One 10(9), e0138614 (2015)

    PubMed  PubMed Central  Google Scholar 

  33. H.M. Yun et al., Magnetic nanofiber scaffold-induced stimulation of odontogenesis and pro-angiogenesis of human dental pulp cells through Wnt/MAPK/NF-kappaB pathways. Dent. Mater. 32(11), 1301–1311 (2016)

    CAS  PubMed  Google Scholar 

  34. S. Sprio et al., A graded multifunctional hybrid scaffold with superparamagnetic ability for periodontal regeneration. Int. J. Mol. Sci. 19(11) (2018). pii: E3604

    Google Scholar 

  35. O. Ziv-Polat et al., Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int. J. Nanomedicine 7, 1259–1274 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Meng et al., Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale 2(12), 2565–2569 (2010)

    CAS  PubMed  Google Scholar 

  37. J. Meng et al., Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 3, 2655 (2013)

    PubMed  PubMed Central  Google Scholar 

  38. X.B. Zeng et al., Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int. J. Nanomedicine 7, 3365–3378 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Tampieri et al., Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process. ACS Appl. Mater. Interfaces 6(18), 15697–15707 (2014)

    CAS  PubMed  Google Scholar 

  40. Q. Cai et al., Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure. Korean J. Couns. Psychother. 55, 166–173 (2015)

    CAS  Google Scholar 

  41. S. Hao et al., Modulatory effects of the composition and structure on the osteogenic enhancement for superparamagnetic scaffolds. Eng. Sci. 4, 100–110 (2018)

    Google Scholar 

  42. S. Aliramaji, A. Zamanian, M. Mozafari, Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Korean J. Couns. Psychother. 70(Pt 1), 736–744 (2017)

    CAS  Google Scholar 

  43. K. Marycz et al., Promotion through external magnetic field of osteogenic differentiation potential in adipose-derived mesenchymal stem cells: design of polyurethane/poly(lactic) acid sponges doped with iron oxide nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 108, 1398–1411 (2020)

    CAS  PubMed  Google Scholar 

  44. A.I. Aldebs et al., Effect of pulsed electromagnetic fields on human mesenchymal stem cells using 3D magnetic scaffolds. Bioelectromagnetics 41, 175–187 (2020)

    CAS  PubMed  Google Scholar 

  45. H.M. Yun et al., Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85, 88–98 (2016)

    CAS  PubMed  Google Scholar 

  46. S. Panseri et al., Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds. Bone 56(2), 432–439 (2013)

    CAS  PubMed  Google Scholar 

  47. A. Russo et al., Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration. J. Mater. Sci. Mater. Med. 27(3), 51 (2016)

    PubMed  Google Scholar 

  48. J. Huang et al., Osteogenic differentiation of bone marrow mesenchymal stem cells by magnetic nanoparticle composite scaffolds under a pulsed electromagnetic field. Saudi Pharm. J. 25(4), 575–579 (2017)

    PubMed  PubMed Central  Google Scholar 

  49. Z. Yuan et al., Development of a 3D collagen model for the in vitro evaluation of magnetic-assisted osteogenesis. Sci. Rep. 8(1), 16270 (2018)

    PubMed  PubMed Central  Google Scholar 

  50. U. D’Amora et al., 3D additive-manufactured nanocomposite magnetic scaffolds: effect of the application mode of a time-dependent magnetic field on hMSCs behavior. Bioact. Mater. 2(3), 138–145 (2017)

    PubMed  PubMed Central  Google Scholar 

  51. I.A. Paun et al., 3D biomimetic magnetic structures for static magnetic field stimulation of osteogenesis. Int. J. Mol. Sci. 19(2) (2018). pii: E495

    Google Scholar 

  52. B. Hermenegildo et al., Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids Surf. B Biointerfaces 181, 1041–1047 (2019)

    CAS  PubMed  Google Scholar 

  53. M.M. Fernandes et al., Bioinspired three-dimensional magnetoactive scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces 11(48), 45265–45275 (2019)

    CAS  PubMed  Google Scholar 

  54. C. Ribeiro et al., Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids Surf. B Biointerfaces 140, 430–436 (2016)

    CAS  PubMed  Google Scholar 

  55. M.A. Brady, S.D. Waldman, C.R. Ethier, The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng. Part B Rev. 21(1), 1–19 (2015)

    PubMed  Google Scholar 

  56. M.A. Brady, S.D. Waldman, C.R. Ethier, The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction. Tissue Eng. Part B Rev. 21(1), 20–33 (2015)

    PubMed  Google Scholar 

  57. E.G. Popa et al., Magnetically-responsive hydrogels for modulation of chondrogenic commitment of human adipose-derived stem cells. Polymers (Basel) 8(2) (2016). pii: E28

    Google Scholar 

  58. M. Brady et al., Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 11, 1298–1302 (2015)

    PubMed  Google Scholar 

  59. R. Fuhrer et al., Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 8(11), e81362 (2013)

    PubMed  PubMed Central  Google Scholar 

  60. A.R. Tomas et al., Magneto-mechanical actuation of magnetic responsive fibrous scaffolds boosts tenogenesis of human adipose stem cells. Nanoscale 11(39), 18255–18271 (2019)

    CAS  PubMed  Google Scholar 

  61. G. Go et al., A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv Healthc Mater Jul;6(13) (2017) https://doi.org/10.1002/adhm.201601378

  62. Y. Sapir et al., The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 33(16), 4100–4109 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Y. Sapir et al., Magnetically actuated alginate scaffold: a novel platform for promoting tissue organization and vascularization. Methods Mol. Biol. 1181, 83–95 (2014)

    PubMed  Google Scholar 

  64. J.J. Mack et al., Enhanced cell viability via strain stimulus and fluid flow in magnetically actuated scaffolds. Biotechnol. Bioeng. 110(3), 936–946 (2013)

    CAS  PubMed  Google Scholar 

  65. Y. Sapir, B. Polyak, S. Cohen, Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology 25(1), 014009 (2014)

    PubMed  Google Scholar 

  66. C. Riggio et al., The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomedicine 10(7), 1549–1558 (2014)

    CAS  PubMed  Google Scholar 

  67. C.D.L. Johnson et al., Injectable, magnetically orienting electrospun fiber conduits for neuron guidance. ACS Appl. Mater. Interfaces 11(1), 356–372 (2019)

    CAS  PubMed  Google Scholar 

  68. M. Antman-Passig, O. Shefi, Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 16(4), 2567–2573 (2016)

    CAS  PubMed  Google Scholar 

  69. J.C. Rose et al., Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance. Nano Lett. 17(6), 3782–3791 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. M.L. Novak, T.J. Koh, Phenotypic transitions of macrophages orchestrate tissue repair. Am. J. Pathol. 183(5), 1352–1363 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. T.A. Wynn, K.M. Vannella, Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3), 450–462 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. S. Hao et al., Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials 140, 16–25 (2017)

    CAS  PubMed  Google Scholar 

  73. H. Kang et al., Remote manipulation of ligand nano-oscillations regulates adhesion and polarization of macrophages in vivo. Nano Lett. 17(10), 6415–6427 (2017)

    CAS  PubMed  Google Scholar 

  74. M.B. Buechler, S.J. Turley, A short field guide to fibroblast function in immunity. Semin. Immunol. 35, 48–58 (2018)

    CAS  PubMed  Google Scholar 

  75. M.B. Furtado, M. Hasham, Properties and immune function of cardiac fibroblasts. Adv. Exp. Med. Biol. 1003, 35–70 (2017)

    CAS  PubMed  Google Scholar 

  76. R. Kuang et al., Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites. Int. J. Clin. Exp. Med. 8(5), 7641–7647 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. S. Hao et al., Integration of a superparamagnetic scaffold and magnetic field to enhance the wound-healing phenotype of fibroblasts. ACS Appl. Mater. Interfaces 10(27), 22913–22923 (2018)

    CAS  PubMed  Google Scholar 

  78. M.T. Lopez-Lopez et al., Generation and characterization of novel magnetic field-responsive biomaterials. PLoS One 10(7), e0133878 (2015)

    PubMed  PubMed Central  Google Scholar 

  79. Z. Liu et al., Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field. Int. J. Nanomedicine 10, 43–61 (2015)

    PubMed  Google Scholar 

  80. Z. Liu et al., A magnetically responsive nanocomposite scaffold combined with Schwann cells promotes sciatic nerve regeneration upon exposure to magnetic field. Int. J. Nanomedicine 12, 7815–7832 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Y. Sapir-Lekhovitser et al., Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. Nanoscale 8(6), 3386–3399 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. S.L. Arias et al., Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta Biomater. 77, 172–181 (2018)

    CAS  PubMed  Google Scholar 

  83. S.J. Mousavi, M.H. Doweidar, Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated magnetic nanoparticles. Comput. Methods Programs Biomed. 130, 106–117 (2016)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, H., Hao, S., Zhou, J. (2020). Magnetically Actuated Scaffolds to Enhance Tissue Regeneration. In: Xu, H., Gu, N. (eds) Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5386-8_1

Download citation

Publish with us

Policies and ethics